Kai*_*ong 9 nlp transformer-model pytorch bert-language-model huggingface-transformers
我想使用 BertForMaskedLM 或 BertModel 来计算句子的困惑度,所以我编写了这样的代码:
\nimport numpy as np\nimport torch\nimport torch.nn as nn\nfrom transformers import BertTokenizer, BertForMaskedLM\n# Load pre-trained model (weights)\nwith torch.no_grad():\n model = BertForMaskedLM.from_pretrained(\'hfl/chinese-bert-wwm-ext\')\n model.eval()\n # Load pre-trained model tokenizer (vocabulary)\n tokenizer = BertTokenizer.from_pretrained(\'hfl/chinese-bert-wwm-ext\')\n sentence = "\xe6\x88\x91\xe4\xb8\x8d\xe4\xbc\x9a\xe5\xbf\x98\xe8\xae\xb0\xe5\x92\x8c\xe4\xbd\xa0\xe4\xb8\x80\xe8\xb5\xb7\xe5\xa5\x8b\xe6\x96\x97\xe7\x9a\x84\xe6\x97\xb6\xe5\x85\x89\xe3\x80\x82"\n tokenize_input = tokenizer.tokenize(sentence)\n tensor_input = torch.tensor([tokenizer.convert_tokens_to_ids(tokenize_input)])\n sen_len = len(tokenize_input)\n sentence_loss = 0.\n\n for i, word in enumerate(tokenize_input):\n # add mask to i-th character of the sentence\n tokenize_input[i] = \'[MASK]\'\n mask_input = torch.tensor([tokenizer.convert_tokens_to_ids(tokenize_input)])\n\n output = model(mask_input)\n\n prediction_scores = output[0]\n softmax = nn.Softmax(dim=0)\n ps = softmax(prediction_scores[0, i]).log()\n word_loss = ps[tensor_input[0, i]]\n sentence_loss += word_loss.item()\n\n tokenize_input[i] = word\n ppl = np.exp(-sentence_loss/sen_len)\n print(ppl)\nRun Code Online (Sandbox Code Playgroud)\n我认为这段代码是正确的,但我也注意到 BertForMaskedLM\ 的参数masked_lm_labels,那么我可以使用这个参数来更容易地计算句子的 PPL 吗?\n我知道 input_ids 参数是屏蔽输入, masked_lm_labels 参数是所需的输出。但我无法理解其输出损失的实际含义,其代码如下:
if masked_lm_labels is not None:\n loss_fct = CrossEntropyLoss() # -100 index = padding token\n masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), \n masked_lm_labels.view(-1))\n outputs = (masked_lm_loss,) + outputs\nRun Code Online (Sandbox Code Playgroud)\n
小智 8
是的,您可以使用参数labels(或者masked_lm_labels,我认为参数名称在 Huggingface 变压器的版本中有所不同,无论如何)来指定屏蔽标记位置,并使用-100忽略您不想包含在损失计算中的标记。\nFor例子,
sentence=\'\xe6\x88\x91\xe7\x88\xb1\xe4\xbd\xa0\'\nfrom transformers import BertTokenizer, BertForMaskedLM\nimport torch\nimport numpy as np\n\ntokenizer = BertTokenizer(vocab_file=\'vocab.txt\')\nmodel = BertForMaskedLM.from_pretrained(\'bert-base-chinese\')\n\ntensor_input = tokenizer(sentence, return_tensors=\'pt\')\n# tensor([[ 101, 2769, 4263, 872, 102]])\n\nrepeat_input = tensor_input.repeat(tensor_input.size(-1)-2, 1)\n# tensor([[ 101, 2769, 4263, 872, 102],\n# [ 101, 2769, 4263, 872, 102],\n# [ 101, 2769, 4263, 872, 102]])\n\nmask = torch.ones(tensor_input.size(-1) - 1).diag(1)[:-2]\n# tensor([[0., 1., 0., 0., 0.],\n# [0., 0., 1., 0., 0.],\n# [0., 0., 0., 1., 0.]])\n\nmasked_input = repeat_input.masked_fill(mask == 1, 103)\n# tensor([[ 101, 103, 4263, 872, 102],\n# [ 101, 2769, 103, 872, 102],\n# [ 101, 2769, 4263, 103, 102]])\n\nlabels = repeat_input.masked_fill( masked_input != 103, -100)\n# tensor([[-100, 2769, -100, -100, -100],\n# [-100, -100, 4263, -100, -100],\n# [-100, -100, -100, 872, -100]])\n\nloss,_ = model(masked_input, masked_lm_labels=labels)\n\nscore = np.exp(loss.item())\nRun Code Online (Sandbox Code Playgroud)\n功能:
\ndef score(model, tokenizer, sentence, mask_token_id=103):\n tensor_input = tokenizer.encode(sentence, return_tensors=\'pt\')\n repeat_input = tensor_input.repeat(tensor_input.size(-1)-2, 1)\n mask = torch.ones(tensor_input.size(-1) - 1).diag(1)[:-2]\n masked_input = repeat_input.masked_fill(mask == 1, 103)\n labels = repeat_input.masked_fill( masked_input != 103, -100)\n loss,_ = model(masked_input, masked_lm_labels=labels)\n result = np.exp(loss.item())\n return result\n\nscore(model, tokenizer, \'\xe6\x88\x91\xe7\x88\xb1\xe4\xbd\xa0\') # returns 45.63794545581973\nRun Code Online (Sandbox Code Playgroud)\n
| 归档时间: |
|
| 查看次数: |
7694 次 |
| 最近记录: |