kim*_*kim 5 python conv-neural-network keras tensorflow
我正在使用 CNN 进行多类图像分类,但准确性不是很好。我假设我需要使用通道均值和标准差对训练数据进行标准化,因此它可能有助于提高准确性。我想出了一种方法来做到这一点,但它不是很有效,因为我只是为均值设置了随机值,并为标准化设置了标准差。我不知道如何找到通道均值及其标准差。我想知道有什么办法可以做到这一点。谁能指出我如何实现这一目标?有什么可能的想法吗?
我目前的尝试:
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Dropout, Flatten, Input
from keras.datasets import cifar10
from keras.utils import to_categorical
(X_train, y_train), (X_test, y_test)= cifar10.load_data()
output_class = np.unique(y_train)
n_class = len(output_class)
input_shape = (32, 32, 3)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
y_train_one_hot = to_categorical(y_train)
y_test_one_hot = to_categorical(y_test)
x = tf.keras.Input(shape=(32, 32, 3))
conv = Conv2D(128, (3, 3), activation='relu',input_shape=(32, 32, 3))(x)
conv = MaxPooling2D(pool_size=(2,2))(conv)
conv = Conv2D(64, (2,2))(conv)
conv = MaxPooling2D(pool_size=(2,2))(conv)
conv = Flatten()(conv)
conv = Dense(64, activation='relu')(conv)
conv = Dense(10, activation='softmax')(conv)
model = Model(inputs = x, outputs = conv)
Run Code Online (Sandbox Code Playgroud)
我的标准化尝试:
这是我的标准化方法,我只是将随机值分配给平均值和标准差:
mean = [125.307, 122.95, 113.865] ## random value
std = [62.9932, 62.0887, 66.7048] ## random value
for i in range(3):
X_train[:,:,:,i] = (X_train[:,:,:,i] - mean[i]) / std[i]
X_test[:,:,:,i] = (X_test[:,:,:,i] - mean[i]) / std[i]
Run Code Online (Sandbox Code Playgroud)
我想知道是否有任何方法可以以编程方式找到通道均值及其标准差,以便我们可以进行标准化。这样做有更好的主意吗?还有什么可能可以提高我的样本模型的准确性?如何找到通道均值及其标准差?有什么可能的策略或编码尝试吗?
我相信你可以通过这种方式进行数据标准化,这是很有前途的:
(X_train, y_train), (X_test, y_test) = cifar10.load_data()
X_train = X_train.astype('float32') / 255.0
X_test = X_test.astype('float32') / 255.0
nb_classes = 10
Y_train = to_categorical(y_train, nb_classes)
Y_test = to_categorical(y_test, nb_classes)
## find channel mean, std and do data normalization
train_mean = np.mean(X_train, axis=0)
train_std = np.std(X_train, axis=0)
X_train = (X_train - train_mean) / train_std
X_test = (X_test - train_mean) / train_std
## then do training ....
Run Code Online (Sandbox Code Playgroud)
希望这就是您想要为正常化所做的事情。如果您有任何疑问,请告诉我:)
| 归档时间: |
|
| 查看次数: |
2136 次 |
| 最近记录: |