SLu*_*uck 7 pytorch pytorch-lightning
我试图指定动态的层数,但我似乎做错了。我的问题是,当我在这里定义 100 层时,我会在前进步骤中收到错误。但是当我正确定义图层时它会起作用吗?下面是简化的示例
class PredictFromEmbeddParaSmall(LightningModule):
def __init__(self, hyperparams={'lr': 0.0001}):
super(PredictFromEmbeddParaSmall, self).__init__()
#Input is something like tensor.size=[768*100]
self.TO_ILLUSTRATE = nn.Linear(768, 5)
self.enc_ref=[]
for i in range(100):
self.enc_red.append(nn.Linear(768, 5))
# gather the layers output sth
self.dense_simple1 = nn.Linear(5*100, 2)
self.output = nn.Sigmoid()
def forward(self, x):
# first input to enc_red
x_vecs = []
for i in range(self.para_count):
layer = self.enc_red[i]
# The first dim is the batch size here, output is correct
processed_slice = x[:, i * 768:(i + 1) * 768]
# This works and give the out of size 5
rand = self.TO_ILLUSTRATE(processed_slice)
#This will fail? Error below
ret = layer(processed_slice)
#more things happening we can ignore right now since we fail earlier
Run Code Online (Sandbox Code Playgroud)
执行“ret = layer.forward(processed_slice)”时出现此错误
RuntimeError:预期的设备类型 cuda 对象,但在调用 _th_addmm 时为参数 #1“self”获取了设备类型 cpu
有没有更聪明的方法来编程?或者解决错误?
Vic*_*zzi 10
您应该使用 pytorch 中的 ModuleList 而不是列表: https: //pytorch.org/docs/master/ generated/torch.nn.ModuleList.html 。这是因为 Pytorch 必须保留模型的所有模块的图表,如果您只是将它们添加到列表中,它们不会在图表中正确索引,从而导致您面临的错误。
你的代码应该是类似的:
class PredictFromEmbeddParaSmall(LightningModule):
def __init__(self, hyperparams={'lr': 0.0001}):
super(PredictFromEmbeddParaSmall, self).__init__()
#Input is something like tensor.size=[768*100]
self.TO_ILLUSTRATE = nn.Linear(768, 5)
self.enc_ref=nn.ModuleList() # << MODIFIED LINE <<
for i in range(100):
self.enc_red.append(nn.Linear(768, 5))
# gather the layers output sth
self.dense_simple1 = nn.Linear(5*100, 2)
self.output = nn.Sigmoid()
def forward(self, x):
# first input to enc_red
x_vecs = []
for i in range(self.para_count):
layer = self.enc_red[i]
# The first dim is the batch size here, output is correct
processed_slice = x[:, i * 768:(i + 1) * 768]
# This works and give the out of size 5
rand = self.TO_ILLUSTRATE(processed_slice)
#This will fail? Error below
ret = layer(processed_slice)
#more things happening we can ignore right now since we fail earlier
Run Code Online (Sandbox Code Playgroud)
那么它应该可以正常工作!
编辑:替代方式。
除了使用之外,ModuleList您还可以只使用nn.Sequential,这可以让您避免for在前向传递中使用循环。这也意味着您将无法访问中间激活,因此如果您需要它们,这不是适合您的解决方案。
class PredictFromEmbeddParaSmall(LightningModule):
def __init__(self, hyperparams={'lr': 0.0001}):
super(PredictFromEmbeddParaSmall, self).__init__()
#Input is something like tensor.size=[768*100]
self.TO_ILLUSTRATE = nn.Linear(768, 5)
self.enc_ref=[]
for i in range(100):
self.enc_red.append(nn.Linear(768, 5))
self.enc_red = nn.Seqential(*self.enc_ref) # << MODIFIED LINE <<
# gather the layers output sth
self.dense_simple1 = nn.Linear(5*100, 2)
self.output = nn.Sigmoid()
def forward(self, x):
# first input to enc_red
x_vecs = []
out = self.enc_red(x) # << MODIFIED LINE <<
Run Code Online (Sandbox Code Playgroud)
此处发布了更多可调整的解决方案,具体取决于您的具体情况的品味或复杂性。
作为参考,我在这里发布了代码的调整版本:
import torch
from torch import nn, optim
from torch.nn.modules import Module
from implem.settings import settings
class Model(nn.Module):
def __init__(self, input_size, layers_data: list, learning_rate=0.01, optimizer=optim.Adam):
super().__init__()
self.layers = nn.ModuleList()
self.input_size = input_size # Can be useful later ...
for size, activation in layers_data:
self.layers.append(nn.Linear(input_size, size))
input_size = size # For the next layer
if activation is not None:
assert isinstance(activation, Module), \
"Each tuples should contain a size (int) and a torch.nn.modules.Module."
self.layers.append(activation)
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.learning_rate = learning_rate
self.optimizer = optimizer(params=self.parameters(), lr=learning_rate)
def forward(self, input_data):
for layer in self.layers:
input_data = layer(input_data)
return input_data
# test that the net is working properly
if __name__ == "__main__":
data_size = 5
layer1, layer2 = 10, 10
output_size = 2
data = torch.randn(data_size)
mlp = Model(data_size, [(layer1, nn.ReLU()), (layer2, nn.ReLU()), (output_size, nn.Sigmoid())])
output = mlp(data)
print("done")
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
7421 次 |
| 最近记录: |