big*_*nty 7 python python-3.x python-internals python-performance python-dataclasses
我正在浏览数据类并命名元组。我发现这种行为在使用 python 的不同特性创建对象时具有不同的性能。
数据类
In [1]: from dataclasses import dataclass
...:
...: @dataclass
...: class Position:
...: lon: float = 0.0
...: lat: float = 0.0
...:
In [2]: %timeit for _ in range(1000): Position(12.5, 345)
326 µs ± 34.9 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Run Code Online (Sandbox Code Playgroud)
普通班:
In [1]: class Position:
...:
...: def __init__(self, lon=0.0, lat=0.0):
...: self.lon = lon
...: self.lat = lat
...:
In [2]: %timeit for _ in range(1000): Position(12.5, 345)
248 µs ± 2.89 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Run Code Online (Sandbox Code Playgroud)
命名元组:
In [2]: Position = namedtuple("Position", ["lon","lat"], defaults=[0.0,0.0])
In [3]: %timeit for _ in range(1000): Position(12.5, 345)
286 µs ± 13.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Run Code Online (Sandbox Code Playgroud)
Python Env - Python 3.7.3
OS - MacOS Mojave
Run Code Online (Sandbox Code Playgroud)
所有实现都具有相同的对象属性、相同的默认值。
这里,时间表示创建对象所花费的时间。
在 Python 中,一切都是字典。对于数据类,该字典中有更多条目,因此需要更多时间将它们放在那里。
这种变化是如何发生的?@Arne 的评论发现我在这里遗漏了一些东西。我做了示例代码:
from dataclasses import dataclass
import time
@dataclass
class Position:
lon: float = 0.0
lat: float = 0.0
start_time = time.time()
for i in range(100000):
p = Position(lon=1.0, lat=1.0)
elapsed = time.time() - start_time
print(f"dataclass {elapsed}")
print(dir(p))
class Position2:
lon: float = 0.0
lat: float = 0.0
def __init__(self, lon, lat):
self.lon = lon
self.lat = lat
start_time = time.time()
for i in range(100000):
p = Position2(lon=1.0, lat=1.0)
elapsed = time.time() - start_time
print(f"just class {elapsed}")
print(dir(p))
start_time = time.time()
for i in range(100000):
p = {"lon": 1.0, "lat": 1.0}
elapsed = time.time() - start_time
print(f"dict {elapsed}")
Run Code Online (Sandbox Code Playgroud)
结果:
from dataclasses import dataclass
import time
@dataclass
class Position:
lon: float = 0.0
lat: float = 0.0
start_time = time.time()
for i in range(100000):
p = Position(lon=1.0, lat=1.0)
elapsed = time.time() - start_time
print(f"dataclass {elapsed}")
print(dir(p))
class Position2:
lon: float = 0.0
lat: float = 0.0
def __init__(self, lon, lat):
self.lon = lon
self.lat = lat
start_time = time.time()
for i in range(100000):
p = Position2(lon=1.0, lat=1.0)
elapsed = time.time() - start_time
print(f"just class {elapsed}")
print(dir(p))
start_time = time.time()
for i in range(100000):
p = {"lon": 1.0, "lat": 1.0}
elapsed = time.time() - start_time
print(f"dict {elapsed}")
Run Code Online (Sandbox Code Playgroud)
Dict示例供参考。
查看dataclass,这个函数:
(489) def _init_fn(fields, frozen, has_post_init, self_name, globals):
Run Code Online (Sandbox Code Playgroud)
负责创建构造函数。正如 Arne 发现的那样 - post_init 代码是可选的,并且不会生成。我有其他想法,围绕领域有一些工作,但是:
In [5]: p = Position(lat = 1.1, lon=2.2)
In [7]: p.lat.__class__
Out[7]: float
Run Code Online (Sandbox Code Playgroud)
所以这里没有额外的包装/代码。从所有这些中,我看到的唯一额外的东西 - 是更多的方法。
| 归档时间: |
|
| 查看次数: |
473 次 |
| 最近记录: |