Ran*_*iru 5 javascript bezier html5-canvas cubic-bezier
我需要使用本机 Javascript 绘制并获取每个步骤的贝塞尔曲线的坐标,而不需要 ctx.bezierCurveTo 方法。
我尝试了下面的方法,但它不能正常工作。这里我附上了我的代码和输出曲线。
const accuracy = 0.01; let temp = 4;
function draw(event) {
if (!isDrawing) { return; }
points.push({ x: event.clientX, y: event.clientY });
let count = 0;
if(points.length === temp) {
ctx.beginPath();
ctx.moveTo(points[points.length - 4].x, points[points.length - 4].y)
for (let i = 0; i <= 1; i += accuracy) {
const p = bezier2(i, points[points.length - 4], points[points.length - 3] ,
points[points.length - 2], points[points.length-1]);
ctx.lineTo(p.x,p.y)
}
temp += 3
ctx.stroke();
ctx.closePath();
}
}
function bezier2(t, p0, p1, p2, p3){
const aX = p0.x ;
const bX = 3.0 * p1.x;
const cX = 3.0 * p2.x;
const dX = p3.x ;
const aY = p0.y;
const bY = 3.0 * p1.y ;
const cY = 3.0 * p2.y;
const dY = p3.y;
const x = (p0.x * Math.pow((1 - t), 3)) + (3.0 * p1.x * Math.pow((1 - t), 2) * t) + (3.0 * p2.x * Math.pow((t), 2) * (1 - t)) + (p3.x * Math.pow(t, 3));
const y = (p0.y * Math.pow((1 - t), 3)) + (3.0 * p1.y * Math.pow((1 - t), 2) * t) + (3.0 * p2.y * Math.pow((t), 2) * (1 - t)) + (p3.y * Math.pow(t, 3));
return {x: x, y: y};
}
Run Code Online (Sandbox Code Playgroud)
我找到了一些方法来解决这个问题,它为我提供了预期的输出。我用 1 个控制点贝塞尔曲线算法对其进行了测试。这是我的示例代码。
function draw(event) {
if (!isDrawing) { return; }
points.push({ x: event.clientX, y: event.clientY });
let count = 0; pointArray = [];
if (points.length > 1) {
let begin; let control;
const end = midPointBtw(points[points.length - 2] , points[points.length - 1] );
if (points.length === 2) {
begin = points[0];
const middle = midPointBtw(points[0] , points[1]);
control = midPointBtw(middle , points[1]);
} else {
begin = midPointBtw(points[points.length - 3] , points[points.length - 2]);
control = points[points.length - 2];
}
for (let i = 0; i < 1; i += accuracy) {
const p = bezier3(i, begin , control, end);
pointArray.push(p);
count++;
}
if (count === 100) {
ctx.beginPath();
ctx.moveTo(begin.x, begin.y);
for (let i = 0; i < pointArray.length - 1; i += 1) {
ctx.lineTo(pointArray[i].x, pointArray[i].y);
}
ctx.stroke();
ctx.closePath();
}
}
}
function midPointBtw(p1, p2) {
return {
x: p1.x + (p2.x - p1.x) / 2,
y: p1.y + (p2.y - p1.y) / 2
};
}
function bezier3(t, begin, control, end) {
const cX = (end.x);
const bX = 2 * (control.x);
const aX = begin.x ;
const cY = (end.y);
const bY = 2 * (control.y) ;
const aY = begin.y;
const x = (aX * Math.pow((1 - t), 2)) + (bX * (1 - t) * t) + (cX * Math.pow(t, 2)) ;
const y = (aY * Math.pow((1 - t), 2)) + (bY * (1 - t) * t) + (cY * Math.pow(t, 2));
return {x: x, y: y};
}
Run Code Online (Sandbox Code Playgroud)