ged*_*133 1 python scikit-learn grid-search lightgbm
我正在尝试使用GridSearchCVLightGBMsklearn估计器,但在构建搜索时遇到问题。
我要构建的代码如下所示:
d_train = lgb.Dataset(X_train, label=y_train)
params = {}
params['learning_rate'] = 0.003
params['boosting_type'] = 'gbdt'
params['objective'] = 'binary'
params['metric'] = 'binary_logloss'
params['sub_feature'] = 0.5
params['num_leaves'] = 10
params['min_data'] = 50
params['max_depth'] = 10
clf = lgb.train(params, d_train, 100)
param_grid = {
'num_leaves': [10, 31, 127],
'boosting_type': ['gbdt', 'rf'],
'learning rate': [0.1, 0.001, 0.003]
}
gsearch = GridSearchCV(estimator=clf, param_grid=param_grid)
lgb_model = gsearch.fit(X=train, y=y)
Run Code Online (Sandbox Code Playgroud)
但是我遇到了以下错误:
TypeError: estimator should be an estimator implementing 'fit' method,
<lightgbm.basic.Booster object at 0x0000014C55CA2880> was passed
Run Code Online (Sandbox Code Playgroud)
然而 LightGBM 是使用该train()方法进行训练的,fit()因此该网格搜索不可用吗?
谢谢
您使用的对象lgb不支持该scikit-learnAPI。这就是为什么你不能以这种方式使用它。
但是,该lightgbm包提供了与 API 兼容的类scikit-learn。根据您尝试完成的监督学习任务(分类或回归),使用LGBMClassifier 或LGBMRegressor。分类任务的示例:
from lightgbm import LGBMClassifier
from sklearn.model_selection import GridSearchCV
clf = LGBMClassifier()
param_grid = {
'num_leaves': [10, 31, 127],
'boosting_type': ['gbdt', 'rf'],
'learning rate': [0.1, 0.001, 0.003]
}
gsearch = GridSearchCV(estimator=clf, param_grid=param_grid)
gsearch.fit(X_train, y_train)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
1585 次 |
| 最近记录: |