Hugging-Face Transformers:从路径错误加载模型

Spa*_*tan 5 huggingface-transformers huggingface-tokenizers

我对 Hugging-Face 变压器很陌生。当我尝试从给定路径加载xlm-roberta-base模型时,我面临以下问题:

>> tokenizer = AutoTokenizer.from_pretrained(model_path)
>> Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/home/user/anaconda3/lib/python3.7/site-packages/transformers/tokenization_auto.py", line 182, in from_pretrained
    return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
  File "/home/user/anaconda3/lib/python3.7/site-packages/transformers/tokenization_utils.py", line 309, in from_pretrained
    return cls._from_pretrained(*inputs, **kwargs)
  File "/home/user/anaconda3/lib/python3.7/site-packages/transformers/tokenization_utils.py", line 458, in _from_pretrained
    tokenizer = cls(*init_inputs, **init_kwargs)
  File "/home/user/anaconda3/lib/python3.7/site-packages/transformers/tokenization_roberta.py", line 98, in __init__
    **kwargs,
  File "/home/user/anaconda3/lib/python3.7/site-packages/transformers/tokenization_gpt2.py", line 133, in __init__
    with open(vocab_file, encoding="utf-8") as vocab_handle:
TypeError: expected str, bytes or os.PathLike object, not NoneType
Run Code Online (Sandbox Code Playgroud)

但是,如果我按其名称加载它,则没有问题:

>> tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base')
Run Code Online (Sandbox Code Playgroud)

我将不胜感激任何帮助。

cro*_*oik 2

我假设您已经按照文档中的描述创建了该目录:

tokenizer.save_pretrained('YOURPATH')
Run Code Online (Sandbox Code Playgroud)

目前正在调查一个问题,该问题仅影响 AutoTokenizer,但不影响底层标记生成器,例如 (XLMRobertaTokenizer)。例如,以下内容应该有效:

from transformers import XLMRobertaTokenizer

tokenizer = XLMRobertaTokenizer.from_pretrained('YOURPATH')
Run Code Online (Sandbox Code Playgroud)

要使用 AutoTokenizer,您还需要保存配置以离线加载它:

from transformers import AutoTokenizer, AutoConfig

tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base')
config = AutoConfig.from_pretrained('xlm-roberta-base')

tokenizer.save_pretrained('YOURPATH')
config.save_pretrained('YOURPATH')

tokenizer = AutoTokenizer.from_pretrained('YOURPATH')
Run Code Online (Sandbox Code Playgroud)

我建议对分词器和模型使用不同的路径或者保留模型的 config.json,因为应用于模型的一些修改将存储在 config.json 中,该修改是在创建过程中创建的model.save_pretrained(),并且在您使用时将被覆盖。如上所述,在模型之后保存标记生成器(即您将无法使用标记生成器 config.json 加载修改后的模型)。