sbs*_*202 5 python machine-learning scikit-learn
我正在尝试在 XGBoost 拟合模型上使用 sklearn plot_partial_dependence 函数,即在调用 .fit 之后。但我不断收到错误消息:
NotFittedError:此 XGBRegressor 实例尚未安装。在使用此估计器之前,使用适当的参数调用 'fit'。
以下是我使用虚拟数据集采取的步骤。
带有虚拟数据的完整示例:
import numpy as np
# dummy dataset
from sklearn.datasets import make_regression
X_train, y_train = make_regression(n_samples = 1000, n_features = 10)
# Import xgboost
import xgboost as xgb
# Initialize the model
model_xgb_1 = xgb.XGBRegressor(max_depth = 5,
learning_rate = 0.01,
n_estimators = 100,
objective = 'reg:squarederror',
booster = 'gbtree')
# Fit the model
# Not assigning to a new variable
model_xgb_1.fit(X_train, y_train)
# Just to check that .predict can be called and works
# without error
print(np.sum(model_xgb_1.predict(X_train)))
# the above works ok and prints the output
#This next step throws an error:
from sklearn.inspection import plot_partial_dependence
plot_partial_dependence(model_xgb_1, X_train, [0])
Run Code Online (Sandbox Code Playgroud)
输出:
662.3468
NotFittedError:此 XGBRegressor 实例尚未安装。在使用此估计器之前,使用适当的参数调用 'fit'。
更新
booster = 'gblinear' 情况下的解决方法
# CHANGE 1/2: Use booster = 'gblinear'
# as no coef are returned for the case of 'gbtree'
model_xgb_1 = xgb.XGBRegressor(max_depth = 5,
learning_rate = 0.01,
n_estimators = 100,
objective = 'reg:squarederror',
booster = 'gblinear')
# Fit the model
# Not assigning to a new variable
model_xgb_1.fit(X_train, y_train)
# Just to check that .predict can be called and works
# without error
print(np.sum(model_xgb_1.predict(X_train)))
# the above works ok and prints the output
#This next step throws an error:
from sklearn.inspection import plot_partial_dependence
plot_partial_dependence(model_xgb_1, X_train, [0])
# CHANGE 2/2
# Add the following:
model_xgb_1.coef__ = model_xgb_1.coef_
model_xgb_1.intercept__ = model_xgb_1.intercept_
# Now call plot_partial_dependence --- It works ok
from sklearn.inspection import plot_partial_dependence
plot_partial_dependence(model_xgb_1, X_train, [0])
Run Code Online (Sandbox Code Playgroud)
为了避免此错误,请勿影响变量的拟合模型。
# Import xgboost
import xgboost as xgb
# Initialize the model
model_xgb_1 = xgb.XGBRegressor(max_depth = max_depth,
learning_rate = shrinkage,
n_estimators = nTrees,
objective = 'reg:squarederror',
booster = 'gbtree')
# Fit the model
model_xgb_1.fit(X_train, y_train)
# Just to check that .predict can be called and works
# without error
model_xgb_1.predict(X_train)
# the above works ok and prints the output
#This next step throws an error:
from sklearn.inspection import plot_partial_dependence
plot_partial_dependence(model_xgb_1, X_train, [0])
Run Code Online (Sandbox Code Playgroud)