Sea*_*ean 5 python model machine-learning pandas scikit-learn
我正在尝试创建一个机器学习模型来预测谁会在泰坦尼克号上生存。每次我尝试拟合我的模型时,都会收到此错误:
Traceback (most recent call last):
  File "c:\Users\seand\.vscode\extensions\ms-python.python-2020.6.89148\pythonFiles\ptvsd_launcher.py", line 48, in <module>
    main(ptvsdArgs)
  File "c:\Users\seand\.vscode\extensions\ms-python.python-2020.6.89148\pythonFiles\lib\python\old_ptvsd\ptvsd\__main__.py", line 432, in main
    run()
  File "c:\Users\seand\.vscode\extensions\ms-python.python-2020.6.89148\pythonFiles\lib\python\old_ptvsd\ptvsd\__main__.py", line 316, in run_file
    runpy.run_path(target, run_name='__main__')
    return _run_module_code(code, init_globals, run_name,
  File "D:\Python\lib\runpy.py", line 97, in _run_module_code
    _run_code(code, mod_globals, init_globals,
  File "D:\Python\lib\runpy.py", line 87, in _run_code
    exec(code, run_globals)
  File "d:\Kaggle\Titanic\titanic4.py", line 100, in <module>
    cat_cols2 = pd.DataFrame(OneHot1.fit_transform(new_df[cat_columns]))
  File "D:\Python\lib\site-packages\pandas\core\frame.py", line 2806, in __getitem__
    indexer = self.loc._get_listlike_indexer(key, axis=1, raise_missing=True)[1]
  File "D:\Python\lib\site-packages\pandas\core\indexing.py", line 1552, in _get_listlike_indexer
    self._validate_read_indexer(
  File "D:\Python\lib\site-packages\pandas\core\indexing.py", line 1640, in _validate_read_indexer
    raise KeyError(f"None of [{key}] are in the [{axis_name}]")
KeyError: "None of [Index(['Name', 'Sex', 'Ticket', 'Cabin', 'Embarked'], dtype='object')] are in the [columns]"
PS D:\Kaggle\Titanic>  cd 'd:\Kaggle\Titanic'; ${env:PYTHONIOENCODING}='UTF-8'; ${env:PYTHONUNBUFFERED}='1'; & 'D:\Python\python.exe' 'c:\Users\seand\.vscode\extensions\ms-python.python-2020.6.89148\pythonFiles\ptvsd_launcher.py' '--default' '--client' '--host' 'localhost' '--port' '60778' 'd:\Kaggle\Titanic\titanic4.py'
Traceback (most recent call last):
  File "c:\Users\seand\.vscode\extensions\ms-python.python-2020.6.89148\pythonFiles\ptvsd_launcher.py", line 48, in <module>
    main(ptvsdArgs)
  File "c:\Users\seand\.vscode\extensions\ms-python.python-2020.6.89148\pythonFiles\lib\python\old_ptvsd\ptvsd\__main__.py", line 432, in main
    run()
  File "c:\Users\seand\.vscode\extensions\ms-python.python-2020.6.89148\pythonFiles\lib\python\old_ptvsd\ptvsd\__main__.py", line 316, in run_file
    runpy.run_path(target, run_name='__main__')
  File "D:\Python\lib\runpy.py", line 265, in run_path
    return _run_module_code(code, init_globals, run_name,
  File "D:\Python\lib\runpy.py", line 97, in _run_module_code
    _run_code(code, mod_globals, init_globals,
  File "D:\Python\lib\runpy.py", line 87, in _run_code
    exec(code, run_globals)
  File "d:\Kaggle\Titanic\titanic4.py", line 143, in <module>
    my_pipeline.fit(new_df,y)
  File "D:\Python\lib\site-packages\sklearn\pipeline.py", line 330, in fit
    Xt = self._fit(X, y, **fit_params_steps)
  File "D:\Python\lib\site-packages\sklearn\pipeline.py", line 292, in _fit
    X, fitted_transformer = fit_transform_one_cached(
  File "D:\Python\lib\site-packages\joblib\memory.py", line 352, in __call__
    return self.func(*args, **kwargs)
  File "D:\Python\lib\site-packages\sklearn\pipeline.py", line 740, in _fit_transform_one
    res = transformer.fit_transform(X, y, **fit_params)
  File "D:\Python\lib\site-packages\sklearn\compose\_column_transformer.py", line 531, in fit_transform
    result = self._fit_transform(X, y, _fit_transform_one)
  File "D:\Python\lib\site-packages\sklearn\compose\_column_transformer.py", line 458, in _fit_transform
    return Parallel(n_jobs=self.n_jobs)(
  File "D:\Python\lib\site-packages\joblib\parallel.py", line 1032, in __call__
    while self.dispatch_one_batch(iterator):
  File "D:\Python\lib\site-packages\joblib\parallel.py", line 847, in dispatch_one_batch
    self._dispatch(tasks)
  File "D:\Python\lib\site-packages\joblib\parallel.py", line 765, in _dispatch
    job = self._backend.apply_async(batch, callback=cb)
  File "D:\Python\lib\site-packages\joblib\_parallel_backends.py", line 206, in apply_async
    result = ImmediateResult(func)
  File "D:\Python\lib\site-packages\joblib\_parallel_backends.py", line 570, in __init__
    self.results = batch()
  File "D:\Python\lib\site-packages\joblib\parallel.py", line 252, in __call__
    return [func(*args, **kwargs)
  File "D:\Python\lib\site-packages\joblib\parallel.py", line 252, in <listcomp>
    return [func(*args, **kwargs)
    res = transformer.fit_transform(X, y, **fit_params)
  File "D:\Python\lib\site-packages\sklearn\pipeline.py", line 367, in fit_transform
    Xt = self._fit(X, y, **fit_params_steps)
  File "D:\Python\lib\site-packages\sklearn\pipeline.py", line 292, in _fit
    X, fitted_transformer = fit_transform_one_cached(
  File "D:\Python\lib\site-packages\joblib\memory.py", line 352, in __call__
    return self.func(*args, **kwargs)
  File "D:\Python\lib\site-packages\sklearn\pipeline.py", line 740, in _fit_transform_one
    res = transformer.fit_transform(X, y, **fit_params)
  File "D:\Python\lib\site-packages\sklearn\base.py", line 693, in fit_transform
    return self.fit(X, y, **fit_params).transform(X)
  File "D:\Python\lib\site-packages\sklearn\impute\_base.py", line 459, in transform
    coordinates = np.where(mask.transpose())[::-1]
AttributeError: 'bool' object has no attribute 'transpose'
PS D:\Kaggle\Titanic>  cd 'd:\Kaggle\Titanic'; ${env:PYTHONIOENCODING}='UTF-8'; ${env:PYTHONUNBUFFERED}='1'; & 'D:\Python\python.exe' 'c:\Users\seand\.vscode\extensions\ms-python.python-2020.6.89148\pythonFiles\ptvsd_launcher.py' '--default' '--client' '--host' 'localhost' '--port' '60800' 'd:\Kaggle\Titanic\titanic4.py' 
Traceback (most recent call last):
  File "c:\Users\seand\.vscode\extensions\ms-python.python-2020.6.89148\pythonFiles\ptvsd_launcher.py", line 48, in <module>
    main(ptvsdArgs)
  File "c:\Users\seand\.vscode\extensions\ms-python.python-2020.6.89148\pythonFiles\lib\python\old_ptvsd\ptvsd\__main__.py", line 432, in main
    run()
  File "c:\Users\seand\.vscode\extensions\ms-python.python-2020.6.89148\pythonFiles\lib\python\old_ptvsd\ptvsd\__main__.py", line 316, in run_file
    runpy.run_path(target, run_name='__main__')
  File "D:\Python\lib\runpy.py", line 265, in run_path
    return _run_module_code(code, init_globals, run_name,
  File "D:\Python\lib\runpy.py", line 97, in _run_module_code
    _run_code(code, mod_globals, init_globals,
  File "D:\Python\lib\runpy.py", line 87, in _run_code
    exec(code, run_globals)
  File "d:\Kaggle\Titanic\titanic4.py", line 122, in <module>
    my_pipeline.fit(new_df,y)
  File "D:\Python\lib\site-packages\sklearn\pipeline.py", line 330, in fit
    Xt = self._fit(X, y, **fit_params_steps)
  File "D:\Python\lib\site-packages\sklearn\pipeline.py", line 292, in _fit
    X, fitted_transformer = fit_transform_one_cached(
  File "D:\Python\lib\site-packages\joblib\memory.py", line 352, in __call__
    return self.func(*args, **kwargs)
  File "D:\Python\lib\site-packages\sklearn\pipeline.py", line 740, in _fit_transform_one
    res = transformer.fit_transform(X, y, **fit_params)
  File "D:\Python\lib\site-packages\sklearn\compose\_column_transformer.py", line 531, in fit_transform
    result = self._fit_transform(X, y, _fit_transform_one)
  File "D:\Python\lib\site-packages\sklearn\compose\_column_transformer.py", line 458, in _fit_transform
    return Parallel(n_jobs=self.n_jobs)(
  File "D:\Python\lib\site-packages\joblib\parallel.py", line 1032, in __call__
    while self.dispatch_one_batch(iterator):
  File "D:\Python\lib\site-packages\joblib\parallel.py", line 847, in dispatch_one_batch
    self._dispatch(tasks)
  File "D:\Python\lib\site-packages\joblib\parallel.py", line 765, in _dispatch
    job = self._backend.apply_async(batch, callback=cb)
  File "D:\Python\lib\site-packages\joblib\_parallel_backends.py", line 206, in apply_async
    result = ImmediateResult(func)
  File "D:\Python\lib\site-packages\joblib\_parallel_backends.py", line 570, in __init__
    self.results = batch()
  File "D:\Python\lib\site-packages\joblib\parallel.py", line 252, in __call__
    return [func(*args, **kwargs)
  File "D:\Python\lib\site-packages\joblib\parallel.py", line 252, in <listcomp>
    return [func(*args, **kwargs)
  File "D:\Python\lib\site-packages\sklearn\pipeline.py", line 740, in _fit_transform_one
    res = transformer.fit_transform(X, y, **fit_params)
  File "D:\Python\lib\site-packages\sklearn\pipeline.py", line 367, in fit_transform
    Xt = self._fit(X, y, **fit_params_steps)
  File "D:\Python\lib\site-packages\sklearn\pipeline.py", line 292, in _fit
    X, fitted_transformer = fit_transform_one_cached(
  File "D:\Python\lib\site-packages\joblib\memory.py", line 352, in __call__
    return self.func(*args, **kwargs)
  File "D:\Python\lib\site-packages\sklearn\pipeline.py", line 740, in _fit_transform_one
    res = transformer.fit_transform(X, y, **fit_params)
  File "D:\Python\lib\site-packages\sklearn\base.py", line 693, in fit_transform
    return self.fit(X, y, **fit_params).transform(X)
  File "D:\Python\lib\site-packages\sklearn\impute\_base.py", line 459, in transform
    coordinates = np.where(mask.transpose())[::-1]
AttributeError: 'bool' object has no attribute 'transpose'
我正在运行的代码如下:
from xgboost import XGBClassifier
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.feature_selection import SelectFromModel
from itertools import combinations
import pandas as pd 
import numpy as np
#read in data
training_data = pd.read_csv('train.csv')
testing_data = pd.read_csv('test.csv')
#seperate X and Y
X_train_full = training_data.copy()
y = X_train_full.Survived
X_train_full.drop(['Survived'], axis=1, inplace=True)
y_test = testing_data
#get all str columns
cat_columns1 = [cname for cname in X_train_full.columns if
                    X_train_full[cname].dtype == "object"]
interactions = pd.DataFrame(index= X_train_full)
#create new features
for combination in combinations(cat_columns1,2):
    imputer = SimpleImputer(strategy='constant')
    new_col_name = '_'.join(combination)
    col1 = X_train_full[combination[0]]
    col2 = X_train_full[combination[1]]
    col1 = np.array(col1).reshape(-1,1)
    col2 = np.array(col2).reshape(-1,1)
    col1 = imputer.fit_transform(col1)
    col2 = imputer.fit_transform(col2)
    new_vals = col1 + '_' + col2
    OneHot = OneHotEncoder()
    interactions[new_col_name] = OneHot.fit_transform(new_vals)
 
interactions = interactions.reset_index(drop = True)
#create new dataframe with new features included
new_df = X_train_full.join(interactions)
 
#do the same for the test file
interactions2 = pd.DataFrame(index= y_test)
for combination in combinations(cat_columns1,2):
    imputer = SimpleImputer(strategy='constant')
    new_col_name = '_'.join(combination)
    col1 = y_test[combination[0]]
    col2 = y_test[combination[1]]
    col1 = np.array(col1).reshape(-1,1)
    col2 = np.array(col2).reshape(-1,1)
    col1 = imputer.fit_transform(col1)
    col2 = imputer.fit_transform(col2)
    new_vals = col1 + '_' + col2
    OneHot = OneHotEncoder()
    interactions2[new_col_name] = OneHot.fit_transform(new_vals)
    interactions2[new_col_name] = new_vals
 
interactions2 = interactions2.reset_index(drop = True)
y_test = y_test.join(interactions2)
#get names of cat columns (with new features added)
cat_columns = [cname for cname in new_df.columns if
                    new_df[cname].dtype == "object"]
# Select numerical columns
num_columns = [cname for cname in new_df.columns if 
                new_df[cname].dtype in ['int64', 'float64']]
#set up pipeline
numerical_transformer = SimpleImputer(strategy = 'constant')
categorical_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='constant')),
    ('onehot', OneHotEncoder(handle_unknown='ignore'))
])
preprocessor = ColumnTransformer(
    transformers=[
        ('num', numerical_transformer, num_columns),
        ('cat', categorical_transformer, cat_columns)
    ])
model = XGBClassifier()
my_pipeline = Pipeline(steps=[('preprocessor', preprocessor),
                              ('model', model)
                             ])
#fit model
my_pipeline.fit(new_df,y)
我正在阅读的 csv 文件可以通过以下链接从 Kaggle 获取:
https://www.kaggle.com/c/titanic/data
我无法弄清楚是什么导致了这个问题。任何帮助将非常感激。
小智 9
发生这种情况可能是因为您的数据包含pd.NA值。pd.NA在 pandas 1.0.0 中引入,但仍标记为实验性的。
SimpleImputer最终将运行data == np.nan,通常会返回一个 numpy 数组。相反,当data包含pd.NA值时,它返回单个布尔标量。
一个例子:
import pandas as pd
import numpy as np
test_pd_na = pd.DataFrame({"A": [1, 2, 3, pd.NA]})
test_np_nan = pd.DataFrame({"A": [1, 2, 3, np.nan]})
test_np_nan.to_numpy() == np.nan:
> array([[False],
       [False],
       [False],
       [False]])
test_pd_na.to_numpy() == np.nan
> False
解决方案是将所有pd.NA值转换为np.nan运行之前SimpleImputer。您可以.replace({pd.NA: np.nan})为此目的使用数据框。缺点显然是您失去了pd.NA带来的好处,例如缺少数据的整数列,而不是将这些列转换为浮点列。
| 归档时间: | 
 | 
| 查看次数: | 4860 次 | 
| 最近记录: |