Shu*_*ras 2 r machine-learning batch-processing mlr3
我正在使用 R 中的 mlr3 包进行建模和预测。我正在处理一个包含测试集和训练集的大数据集。测试集和训练集由指示符列指示(在代码中:test_or_train)。
library(readr)
library(mlr3)
library(mlr3learners)
library(mlr3pipelines)
library(reprex)
library(caret)
# Data
urlfile = 'https://raw.githubusercontent.com/shudras/office_data/master/office_data.csv'
data = read_csv(url(urlfile))[-1]
## Create artificial partition to test and train sets
art_part = createDataPartition(data$imdb_rating, list=FALSE)
train = data[art_part,]
test = data[-art_part,]
## Add test-train indicators
train$test_or_train = 'train'
test$test_or_train = 'test'
## Data set that I want to work / am working with
data = rbind(test, train)
# Create two tasks (Here the tasks are the same but in my data set they differ.)
task1 =
TaskRegr$new(
id = 'office1',
backend = data,
target = 'imdb_rating'
)
task2 =
TaskRegr$new(
id = 'office2',
backend = data,
target = 'imdb_rating'
)
# Model specification
graph =
po('scale') %>>%
lrn('regr.cv_glmnet',
id = 'rp',
alpha = 1,
family = 'gaussian'
)
# Learner creation
learner = GraphLearner$new(graph)
# Goal
## 1. Batch train all learners with the train rows indicated by the train_or_test column in the data set
## 2. Batch predict the rows designated by the 'test' in the test_or_train column with the respective trained learner
Run Code Online (Sandbox Code Playgroud)
由reprex 包(v0.3.0)于 2020 年 6 月 22 日创建
我尝试使用带有 row_ids 的 benchmark_grid 来仅用训练行训练学习者,但这不起作用,而且也不可能使用列指示符,因为它比使用行索引容易得多。使用列测试训练指示符,您可以使用一个规则(用于拆分),而使用行索引仅在任务包含相同行时才有效。
benchmark_grid(
tasks = list(task1, task2),
learners = learner,
row_ids = train_rows # Not an argument and not favorable to work with indices
)
Run Code Online (Sandbox Code Playgroud)
小智 6
您可以使用benchmark自定义设计。
以下应该完成这项工作(请注意,我Resampling为每个Task单独实例化了一个自定义。
library(data.table)
design = data.table(
task = list(task1, task2),
learner = list(learner)
)
library(mlr3misc)
design$resampling = map(design$task, function(x) {
# get train/test split
split = x$data()[["test_or_train"]]
# remove train-test split column from the task
x$select(setdiff(x$feature_names, "test_or_train"))
# instantiate a custom resampling with the given split
rsmp("custom")$instantiate(x,
train_sets = list(which(split == "train")),
test_sets = list(which(split == "test"))
)
})
benchmark(design)
Run Code Online (Sandbox Code Playgroud)
您能否batch-processing更清楚地说明您的意思,或者这是否回答了您的问题?
| 归档时间: |
|
| 查看次数: |
161 次 |
| 最近记录: |