Red*_*Red 14 python conv-neural-network pytorch pytorch-lightning
RuntimeError:给定 groups=1,权重大小为 [32, 3, 16, 16, 16],预期输入 [100, 16, 16, 16, 3] 有 3 个通道,但得到了 16 个通道
这是我认为问题所在的代码部分。
def __init__(self):
super(Lightning_CNNModel, self).__init__()
self.conv_layer1 = self._conv_layer_set(3, 32)
self.conv_layer2 = self._conv_layer_set(32, 64)
self.fc1 = nn.Linear(2**3*64, 128)
self.fc2 = nn.Linear(128, 10) # num_classes = 10
self.relu = nn.LeakyReLU()
self.batch=nn.BatchNorm1d(128)
self.drop=nn.Dropout(p=0.15)
def _conv_layer_set(self, in_c, out_c):
conv_layer = nn.Sequential(
nn.Conv3d(in_c, out_c, kernel_size=(3, 3, 3), padding=0),
nn.LeakyReLU(),
nn.MaxPool3d((2, 2, 2)),
)
return conv_layer
def forward(self, x):
out = self.conv_layer1(x)
out = self.conv_layer2(out)
out = out.view(out.size(0), -1)
out = self.fc1(out)
out = self.relu(out)
out = self.batch(out)
out = self.drop(out)
out = self.fc2(out)
return out
Run Code Online (Sandbox Code Playgroud)
这是我正在处理的代码
Mic*_*ngo 17
nn.Conv3d期望输入的大小为[batch_size,channels,deep,height,width]。第一个卷积需要 3 个通道,但如果您的输入大小为[100, 16 , 16, 16, 3],则为 16 个通道。
假设您的数据给出为[batch_size, Depth, Height, width, Channels],您需要交换尺寸,这可以通过以下方式完成torch.Tensor.permute:
# From: [batch_size, depth, height, width, channels]
# To: [batch_size, channels, depth, height, width]
input = input.permute(0, 4, 1, 2, 3)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
32994 次 |
| 最近记录: |