ama*_*ion 4 keras tensorflow tensorflow-lite tensorflow2.0
这是重现错误的简单代码:
import os
os.environ["CUDA_VISIBLE_DEVICES"]="-1"
import numpy as np
from keras.models import Sequential
from keras.layers import Conv1D, Flatten, Dense
import tensorflow as tf
model_path = 'test.h5'
model = Sequential()
model.add(Conv1D(8,(5,), input_shape=(100,1)))
model.add(Flatten())
model.add(Dense(1))
model.compile(loss='mse', optimizer='adam')
model.save(model_path)
model = tf.keras.models.load_model(model_path, compile=False)
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
interpreter = tf.lite.Interpreter(model_content=tflite_model)
interpreter.resize_tensor_input(interpreter.get_input_details()[0]['index'], (2,100,1))
interpreter.resize_tensor_input(interpreter.get_output_details()[0]['index'], (2,1))
interpreter.allocate_tensors()
Run Code Online (Sandbox Code Playgroud)
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-3-ad8e2eea467f> in <module>
27 interpreter.resize_tensor_input(interpreter.get_output_details()[0]['index'], (2,1))
28
---> 29 interpreter.allocate_tensors()
<>/tensorflow/lite/python/interpreter.py in allocate_tensors(self)
240 def allocate_tensors(self):
241 self._ensure_safe()
--> 242 return self._interpreter.AllocateTensors()
243
244 def _safe_to_run(self):
<>/tensorflow/lite/python/interpreter_wrapper/tensorflow_wrap_interpreter_wrapper.py in AllocateTensors(self)
108
109 def AllocateTensors(self):
--> 110 return _tensorflow_wrap_interpreter_wrapper.InterpreterWrapper_AllocateTensors(self)
111
112 def Invoke(self):
RuntimeError: tensorflow/lite/kernels/reshape.cc:66 num_input_elements != num_output_elements (1536 != 768)Node number 3 (RESHAPE) failed to prepare.
Run Code Online (Sandbox Code Playgroud)
问题似乎来自于扁平层中的重塑功能。我已经能够使用tensorflow 1.5 执行这种调整大小,但不能使用2.2 版本。
以下是重塑图层的信息:
{'name': 'sequential_1/flatten_1/Reshape',
'index': 8,
'shape': array([ 1, 768], dtype=int32),
'shape_signature': array([ 1, 768], dtype=int32),
'dtype': numpy.float32,
'quantization': (0.0, 0),
'quantization_parameters': {'scales': array([], dtype=float32),
'zero_points': array([], dtype=int32),
'quantized_dimension': 0},
'sparsity_parameters': {}},
Run Code Online (Sandbox Code Playgroud)
我想也许我也应该调整这个图层的大小,所以我添加了:
interpreter.resize_tensor_input(8, (2,768))
但我得到了完全相同的错误。
RuntimeError: tensorflow/lite/kernels/reshape.cc:66 num_input_elements != num_output_elements (1536 != 768)Node number 3 (RESHAPE) failed to prepare.
我想出了一个解决方法,在转换为 tflite 之前通过重塑 keras 模型,然后将其转换为具体函数并使用 from_concrete_function 而不是 from_keras_model 来重塑模型。
import os
os.environ["CUDA_VISIBLE_DEVICES"]="-1"
import numpy as np
from keras.models import Sequential
from keras.layers import Conv1D, Flatten, Dense
import tensorflow as tf
model_path = 'test.h5'
model = Sequential()
model.add(Conv1D(8,(5,), input_shape=(100,1)))
model.add(Flatten())
model.add(Dense(1))
model.compile(loss='mse', optimizer='adam')
model.save(model_path)
model = tf.keras.models.load_model(model_path, compile=False)
batch_size = 2
input_shape = model.inputs[0].shape.as_list()
input_shape[0] = batch_size
func = tf.function(model).get_concrete_function(
tf.TensorSpec(input_shape, model.inputs[0].dtype))
converter = tf.lite.TFLiteConverter.from_concrete_functions([func])
tflite_model = converter.convert()
interpreter = tf.lite.Interpreter(model_content=tflite_model)
interpreter.allocate_tensors()
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
6639 次 |
| 最近记录: |