Pou*_*del 2 python matplotlib scipy seaborn
我试图根据目标变量的 kde 分布来确定某个功能是否重要。我知道如何绘制 kde 情节并在查看情节后进行猜测,但是否有更正式的做法?比如我们可以计算两条曲线之间非重叠区域的面积吗?
当我用谷歌搜索两条曲线之间的区域时,有很多链接,但没有一个可以解决我的确切问题。
注意:
此图的主要目的是确定该特征是否重要。所以,如果我在这里遗漏了任何隐藏的概念,请进一步建议我。
我想要做的是设置一些阈值,例如 0.2,如果non-overlapping area > 0.2,则断言该功能很重要,否则不重要。
MWE:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
df = sns.load_dataset('titanic')
x0 = df.loc[df['survived']==0,'fare']
x1 = df.loc[df['survived']==1,'fare']
sns.kdeplot(x0,shade=1)
sns.kdeplot(x1,shade=1)
Run Code Online (Sandbox Code Playgroud)
以下是我对问题计算部分的看法:
np.trapz。以下是将这些想法转换为一些示例代码并说明情节:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kde
df = sns.load_dataset('titanic')
x0 = df.loc[df['survived'] == 0, 'fare']
x1 = df.loc[df['survived'] == 1, 'fare']
kde0 = gaussian_kde(x0, bw_method=0.3)
kde1 = gaussian_kde(x1, bw_method=0.3)
xmin = min(x0.min(), x1.min())
xmax = max(x0.max(), x1.max())
dx = 0.2 * (xmax - xmin) # add a 20% margin, as the kde is wider than the data
xmin -= dx
xmax += dx
x = np.linspace(xmin, xmax, 500)
kde0_x = kde0(x)
kde1_x = kde1(x)
inters_x = np.minimum(kde0_x, kde1_x)
plt.plot(x, kde0_x, color='b', label='No')
plt.fill_between(x, kde0_x, 0, color='b', alpha=0.2)
plt.plot(x, kde1_x, color='orange', label='Yes')
plt.fill_between(x, kde1_x, 0, color='orange', alpha=0.2)
plt.plot(x, inters_x, color='r')
plt.fill_between(x, inters_x, 0, facecolor='none', edgecolor='r', hatch='xx', label='intersection')
area_inters_x = np.trapz(inters_x, x)
handles, labels = plt.gca().get_legend_handles_labels()
labels[2] += f': {area_inters_x * 100:.1f} %'
plt.legend(handles, labels, title='Survived?')
plt.title('Fare vs Survived')
plt.tight_layout()
plt.show()
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
557 次 |
| 最近记录: |