SUB*_*KHA 2 python api opencv opencv3.1 fastapi
在使用 Opencv 比较两个图像后,我试图在 fastAPI 中返回一个图像。
这是我到目前为止所做的:
from fastapi import FastAPI , File, UploadFile
import numpy as np
from cv2 import *
import os
import base64
app = FastAPI(debug = True)
@app.post("/uploadfile/")
async def create_upload_file(file: UploadFile = File(...),file1: UploadFile = File(...)):
content = await file.read()
nparr = np.fromstring(content, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
content1 = await file1.read()
nparr1 = np.fromstring(content1, np.uint8)
img1 = cv2.imdecode(nparr1, cv2.IMREAD_COLOR)
akaze = cv2.AKAZE_create()
kpts1, desc1 = akaze.detectAndCompute(img, None)
kpts2, desc2 = akaze.detectAndCompute(img1, None)
matcher = cv2.DescriptorMatcher_create(cv2.DescriptorMatcher_BRUTEFORCE_HAMMING)
matches_1 = matcher.knnMatch(desc1, desc2, 2)
good_points = []
for m,n in matches_1:
if m.distance < 0.7 * n.distance:
good_points.append(m)
mat = (round(len(kpts2)/len(good_points),2))
Run Code Online (Sandbox Code Playgroud)
return_img = cv2.processImage(img)
_, encoded_img = cv2.imencode('.PNG', return_img)
encoded_img = base64.b64encode(return_img)
return {"The similarity is": mat,'encoded_img': endcoded_img}
Run Code Online (Sandbox Code Playgroud)
我究竟做错了什么?
Yag*_*nci 12
是的,您可以使用 FastAPI 返回图像,实际上很简单。
from fastapi import FastAPI
from fastapi.responses import FileResponse
some_file_path = "some_image.jpeg"
app = FastAPI()
@app.get("/")
async def main():
return FileResponse(some_file_path)
Run Code Online (Sandbox Code Playgroud)
确保安装aiofiles
,pip install aiofiles
否则,您将收到如下错误:
AssertionError: 'aiofiles' must be installed to use FileResponse
Run Code Online (Sandbox Code Playgroud)
如果您将图像作为字节考虑使用 StreamingResponse
from fastapi import FastAPI
from fastapi.responses import FileResponse
some_file_path = "some_image.jpeg"
app = FastAPI()
@app.get("/")
async def main():
return FileResponse(some_file_path)
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
4833 次 |
最近记录: |