Des*_*eux 5 crf deep-learning lstm keras tensorflow
keras我使用&实现了带有条件随机场层 (BiLSTM-CRF) 的双向长短期记忆神经网络 (BiLSTM-CRF) keras_contrib(后者用于实现 CRF,它不是本机的一部分keras functionality。该任务被命名为实体识别分类为 6 种之一)网络的输入是一系列 300 维预训练的 GloVe 词嵌入。这是我的模型摘要:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 648) 0
_________________________________________________________________
embedding_1 (Embedding) (None, 648, 300) 1500000
_________________________________________________________________
bidirectional_1 (Bidirection (None, 648, 10000) 3204000
_________________________________________________________________
crf_1 (CRF) (None, 648, 6) 6054
=================================================================
Run Code Online (Sandbox Code Playgroud)
现在我想在TensorFlow1.15 中实现相同的模型。由于 keras_contrib CRF 模块仅适用于 keras 而不适用于 TensorFlow,因此我使用了此TensorFlow存储库中为 1.X构建的 CRF 实现。该存储库包含两个很好的 CRF 示例实现(此处),但在使用我的数据进行训练时,每个示例都会产生不同的错误。
实施1
from tensorflow.keras.layers import Bidirectional, Embedding, LSTM, TimeDistributed
from tensorflow.keras.models import Sequential
from tf_crf_layer.layer import CRF
from tf_crf_layer.loss import crf_loss
from tf_crf_layer.metrics import crf_accuracy
MAX_WORDS = 50000
EMBEDDING_LENGTH = 300
MAX_SEQUENCE_LENGTH = 648
HIDDEN_SIZE = 512
model = Sequential()
model.add(Embedding(MAX_WORDS, EMBEDDING_LENGTH, input_length=MAX_SEQUENCE_LENGTH, mask_zero=True, weights=[embedding_matrix], trainable=False))
model.add(Bidirectional(LSTM(HIDDEN_SIZE, return_sequences=True)))
model.add(CRF(len(labels)))
model.compile('adam', loss=crf_loss, metrics=[crf_accuracy])
Run Code Online (Sandbox Code Playgroud)
这是我尝试编译模型时遇到的错误:
File "/.../tf_crf_layer/metrics/crf_accuracy.py", line 48, in crf_accuracy
crf, idx = y_pred._keras_history[:2]
AttributeError: 'Tensor' object has no attribute '_keras_history'
Run Code Online (Sandbox Code Playgroud)
crf_accuracy从上述存储库计算时会出现错误。
def crf_accuracy(y_true, y_pred):
"""
Get default accuracy based on CRF `test_mode`.
"""
import pdb; pdb.set_trace()
crf, idx = y_pred._keras_history[:2]
if crf.test_mode == 'viterbi':
return crf_viterbi_accuracy(y_true, y_pred)
else:
return crf_marginal_accuracy(y_true, y_pred)
Run Code Online (Sandbox Code Playgroud)
显然,根据此线程,当张量对象不是 keras 层的输出时,就会发生这种错误。为什么这个错误会出现在这里?
实施2
from tf_crf_layer.layer import CRF
from tf_crf_layer.loss import crf_loss, ConditionalRandomFieldLoss
from tf_crf_layer.metrics import crf_accuracy
from tf_crf_layer.metrics.sequence_span_accuracy import SequenceSpanAccuracy
model = Sequential()
model.add(Embedding(MAX_WORDS, EMBEDDING_LENGTH, input_length=MAX_SEQUENCE_LENGTH, mask_zero=True, weights=[embedding_matrix], trainable=False))
model.add(Bidirectional(LSTM(HIDDEN_SIZE, return_sequences=True)))
model.add(CRF(len(labels), name="crf_layer"))
model.summary()
crf_loss_instance = ConditionalRandomFieldLoss()
model.compile(loss={"crf_layer": crf_loss_instance}, optimizer='adam', metrics=[SequenceSpanAccuracy()])
Run Code Online (Sandbox Code Playgroud)
这里模型编译了,但是一旦训练的第一个纪元开始,这个错误就会出现:
InvalidArgumentError: Expected begin and size arguments to be 1-D tensors of size 3, but got shapes [2] and [2] instead.
[[{{node loss_4/crf_layer_loss/Slice_1}}]]
Run Code Online (Sandbox Code Playgroud)
我正在使用小批量训练模型,这可以解释这个错误吗?我还注意到我的 CRF 层模型摘要缺少维度(比较上面摘要和下面摘要中的 CRF 层规范),尽管该层的参数数量与上面相同。为什么会导致这种不匹配以及如何修复它?
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_5 (Embedding) (None, 648, 300) 1500000
_________________________________________________________________
bidirectional_5 (Bidirection (None, 648, 1000) 3204000
_________________________________________________________________
crf_layer (CRF) (None, 648) 6054
=================================================================
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2443 次 |
| 最近记录: |