如何在 plotly 中叠加同一图中的两个图(在 plotly 中创建帕累托图)?

Pou*_*del 9 python plotly

我试图在 plotly 的同一个图中绘制条形图和散点图,但它只显示散点图。

如何显示两个图?

数据

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.ticker import PercentFormatter

import plotly
import plotly.offline as py
import plotly.graph_objs as go
import plotly.figure_factory as ff
import plotly.tools as tls
from plotly.subplots import make_subplots
from plotly.offline import plot, iplot, init_notebook_mode
init_notebook_mode(connected=False)

df = pd.DataFrame({
            'price': [ 4.0, 17.0, 7.0, 7.0, 2.0, 1.0, 1.0],
            'item': ['apple', 'banana', 'carrot', 'plum',
                    'orange', 'date', 'cherry']})

df = df.sort_values(num,ascending=False)
df['cumulative_sum'] = df[num].cumsum()
df['cumulative_perc'] = 100*df['cumulative_sum']/df[num].sum()

df['demarcation'] = 80


num = 'price'
cat = 'item'
title = 'Pareto Chart'
Run Code Online (Sandbox Code Playgroud)

代码

trace1 = go.Bar(
    x=df[cat],
    y=df[num],
    name=num,
    marker=dict(
        color='rgb(34,163,192)'
               )
)
trace2 = go.Scatter(
    x=df[cat],
    y=df['cumulative_perc'],
    name='Cumulative Percentage',
    yaxis='y2',

)

data = [trace1,trace2]

fig = dict(data=data)
iplot(fig)
Run Code Online (Sandbox Code Playgroud)

输出

在此处输入图片说明

必需的

  • 显示条形图和散点图
  • 左侧 y 轴上的条形图 y 刻度
  • 右侧 y 轴上的散点图 y 刻度
  • xticklabels 旋转 90 度

Pou*_*del 13

尝试这个:

import plotly.graph_objects as go
from plotly.subplots import make_subplots

trace1 = go.Bar(
    x=df[cat],
    y=df[num],
    name=num,
    marker=dict(
        color='rgb(34,163,192)'
               )
)
trace2 = go.Scatter(
    x=df[cat],
    y=df['cumulative_perc'],
    name='Cumulative Percentage',
    yaxis='y2'

)

fig = make_subplots(specs=[[{"secondary_y": True}]])
fig.add_trace(trace1)
fig.add_trace(trace2,secondary_y=True)
fig['layout'].update(height = 600, width = 800, title = title,xaxis=dict(
      tickangle=-90
    ))
iplot(fig)
Run Code Online (Sandbox Code Playgroud)

给, 在此处输入图片说明

  • 这里的“iplot”对我来说毫无意义,但是“fig.show()”应该能发挥魔力 (2认同)