Thi*_*iya 4 python classification deep-learning keras tensorflow
我对 tensorflow 很陌生,我想清楚地知道,下面的命令有什么作用?
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import os
num_skipped = 0
for folder_name in ("Cat", "Dog"):
print("folder_name:",folder_name) #folder_name: Cat
folder_path = os.path.join("Dataset/PetImages", folder_name)
print("folder_path:",folder_path) #folder_path: Dataset/PetImages/Cat
for fname in os.listdir(folder_path):
print("fname:",fname) #fname: 5961.jpg
fpath = os.path.join(folder_path, fname)
print("fpath:", fpath) #fpath: Dataset/PetImages/Cat/10591.jpg
try:
fobj = open(fpath, "rb")
is_jfif = tf.compat.as_bytes("JFIF") in fobj.peek(10)
finally:
fobj.close()
if not is_jfif:
num_skipped += 1
# Delete corrupted image
os.remove(fpath)
print("Deleted %d images" % num_skipped)
Run Code Online (Sandbox Code Playgroud)
Keras 网站对上述代码的评论:
在处理大量真实世界的图像数据时,损坏的图像很常见。让我们过滤掉标头中没有字符串“JFIF”的编码错误的图像。
我想具体知道下面的命令是做什么的,它是怎么做的?
is_jfif = tf.compat.as_bytes("JFIF") in fobj.peek(10)
Run Code Online (Sandbox Code Playgroud)
我检查了 API,但不能清楚地理解它。
更好的解释会有很大帮助。
谢谢
| 归档时间: |
|
| 查看次数: |
649 次 |
| 最近记录: |