将 pandas 数据框列拆分为多个并迭代它

joh*_*lor 1 python loops dataframe pandas

我正在尝试寻找一位具有匹配身份的艺术家,他们可以制作各种单一到流派组合的音乐。

这就是我想做的

Artist | Id | Genre                | Jazz | Blues | Rock | Trap | Rap | Hip-Hop | Pop | Rb  |
----------------------------------------------------------------------------------------------------
Bob    | 1  | [Jazz, Blues]        |   1  |   1   |   0  |   0  |   0 |   0     |  0  |   0
----------------------------------------------------------------------------------------------------
Fred   | 2  | [Rock,Jazz]          |   1  |   0   |   1  |   0  |   0 |   0     | 0   |   0
----------------------------------------------------------------------------------------------------
Jeff   | 3  | [Trap, Rap, Hip-Hop] |   0  |   0   |   0  |   1  |   1 |   1     | 0   |   0
----------------------------------------------------------------------------------------------------
Amy    | 4  | [Pop, Rock, Jazz]    |   1  |   0   |   1  |   0  |   0 |   0     | 1   |   0
----------------------------------------------------------------------------------------------------
Mary   | 5  | [Hip-Hop, Jazz, Rb]  |   1  |   0   |   0  |   0  |   0 |   1     | 0   |   1
----------------------------------------------------------------------------------------------------
Run Code Online (Sandbox Code Playgroud)

这是我得到的错误

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-50-7a4ed81e14d7> in <module>
     11 for index, row in artist_df.iterrows():
     12     x.append(index)
---> 13     for i in row['genre']:
     14         artists_with_genres.at[index, genre] = 1
     15 

TypeError: 'float' object is not iterable
Run Code Online (Sandbox Code Playgroud)

这些(艺术家)流派是我在与年份、歌曲或人口统计等其他因素相结合时用来帮助确定类似艺术家的属性。

我正在创建和迭代的新列将指定艺术家是否属于某个流派。用1/0来简单表示艺术家是否是摇滚/嘻哈/陷阱等。使用属性的二进制表示。

这是当前的数据框

在此输入图像描述

获取我的数据框并将流派分成单独的,这样我就可以转换为 1/0 二进制表示形式。

我需要将流派设置为索引吗?

第一个像这样的数据框

Artist | Id | Genre               |
--------------------------------------
Bob    |  1 | Jazz | Blues
--------------------------------------
Fred   |  2 | Rock | Jazz
--------------------------------------
Jeff   |  3 | Trap | Rap | Hip-Hop
--------------------------------------
Amy    |  4 | Pop | Rock | Jazz
--------------------------------------
Mary   |  5 | Hip-Hop | Jazz | Rb
Run Code Online (Sandbox Code Playgroud)

这就是我想做的

Artist | Id | Genre                | Jazz | Blues | Rock | Trap | Rap | Hip-Hop | Pop | Rb  |
----------------------------------------------------------------------------------------------------
Bob    | 1  | [Jazz, Blues]        |   1  |   1   |   0  |   0  |   0 |   0     |  0  |   0
----------------------------------------------------------------------------------------------------
Fred   | 2  | [Rock,Jazz]          |   1  |   0   |   1  |   0  |   0 |   0     | 0   |   0
----------------------------------------------------------------------------------------------------
Jeff   | 3  | [Trap, Rap, Hip-Hop] |   0  |   0   |   0  |   1  |   1 |   1     | 0   |   0
----------------------------------------------------------------------------------------------------
Amy    | 4  | [Pop, Rock, Jazz]    |   1  |   0   |   1  |   0  |   0 |   0     | 1   |   0
----------------------------------------------------------------------------------------------------
Mary   | 5  | [Hip-Hop, Jazz, Rb]  |   1  |   0   |   0  |   0  |   0 |   1     | 0   |   1
----------------------------------------------------------------------------------------------------
Run Code Online (Sandbox Code Playgroud)

每个流派都用 | 分隔。所以我们只需调用 | 上的 split 函数即可。

[![artist_df\['genres'\] = artist_df.genres.str.split('|')
artist_df.head()][1]][1]
Run Code Online (Sandbox Code Playgroud)

首先将df复制一份到df中。

artists_with_genres = df.copy(deep=True)
Run Code Online (Sandbox Code Playgroud)

然后迭代 df,然后将艺术家流派附加为 1 或 0 列。

如果该列包含当前索引处该流派的艺术家,则为 1;如果不包含,则为 0。

x = []

for index, row in artist_df.iterrows():
   x.append(index)
   for genre in row['genres']:
       artists_with_genres.at[index, genre] = 1

**Confirm that every row has been iterated and acted upon.**

print(len(x) == len(artist_df))

artists_with_genres.head(30)

Run Code Online (Sandbox Code Playgroud)

用 0 填充 NaN 值以表明艺术家不具有该列的流派。

artists_with_genres = artists_with_genres.fillna(0)
artists_with_genres.head(3)

Run Code Online (Sandbox Code Playgroud)

NYC*_*der 5

尝试使用以下方法get_dummies

df['Genre'] = df['Genre'].str.split('|')
dfx = pd.get_dummies(pd.DataFrame(df['Genre'].tolist()).stack()).sum(level=0)
df = pd.concat([df, dfx], axis=1).drop(columns=['Genre'])
print(df)

  Artist  Id  Blues  Hip-Hop  Jazz  Pop  Rap  Rb  Rock  Trap
0    Bob   1      1        0     1    0    0   0     0     0
1   Fred   2      0        0     1    0    0   0     1     0
2   Jeff   3      0        1     0    0    1   0     0     1
3    Amy   4      0        0     1    1    0   0     1     0
4   Mary   5      0        1     1    0    0   1     0     0
Run Code Online (Sandbox Code Playgroud)

有关详细说明,请查看此处 -> Pandas 列表的列以分隔列