大家好,我是一名学生,从去年夏天开始学习 pytorch。
state = torch.load('drive/My Drive/MODEL/4 CBAM classifier55')
model = MyResNet()
model.load_state_dict(state['state_dict'])
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.0003,betas=(0.5,0.999))
optimizer.load_state_dict(state['optimizer'])
model.to(device)
Run Code Online (Sandbox Code Playgroud)
我写了像上面这样的代码。
RuntimeError Traceback (most recent call last)
<ipython-input-26-507493db387a> in <module>()
56 new_loss.backward()
57
---> 58 optimizer.step()
59
60 running_loss += loss.item()
/usr/local/lib/python3.6/dist-packages/torch/autograd/grad_mode.py in decorate_context(*args, **kwargs)
13 def decorate_context(*args, **kwargs):
14 with self:
---> 15 return func(*args, **kwargs)
16 return decorate_context
17
/usr/local/lib/python3.6/dist-packages/torch/optim/adam.py in step(self, closure)
97
98 # Decay the first and second moment running average coefficient
---> 99 exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
100 exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
101 if amsgrad:
RuntimeError: expected device cpu but got device cuda:0
Run Code Online (Sandbox Code Playgroud)
当我实现训练代码时,我遇到了这种错误。当我注释掉“optimizer.load_state_dict”时,它运行良好。我怎么解决这个问题?谢谢您的回答。:)
似乎在您保存时state打开cuda,现在尝试使用它cpu,反之亦然。为了避免这个错误,一个简单的方法是将map_location参数传递给load。
只要通过map_location=<device you want to use>就torch.load可以正常工作。另请参阅https://pytorch.org/tutorials/beginner/ saving_loading_models.html# saving-loading-model-across-devices
| 归档时间: |
|
| 查看次数: |
9715 次 |
| 最近记录: |