Vic*_*Sim 0 machine-learning neural-network keras tensorflow
我正在使用带有新功能 API 的 Keras 神经网络的 one-hot 编码。我遇到了如下所示的错误:
Failed to find data adapter that can handle input: (<class 'list'> containing values of types {'(<class \'list\'> containing values of types {\'(<class \\\'list\\\'> containing values of types {\\\'(<class \\\\\\\'list\\\\\\\'> containing values of types {"<class \\\\\\\'int\\\\\\\'>"})\\\'})\'})'}), (<class 'dict'> containing {"<class 'str'>"} keys and {'(<class \'list\'> containing values of types {\'(<class \\\'list\\\'> containing values of types {"<class \\\'int\\\'>"})\'})'} values)
Run Code Online (Sandbox Code Playgroud)
如果我没有记错的话,我相信网络不接受一种热编码作为合适的输出。有谁知道这个错误的解决方法?
代码片段:
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
board_inputs = keras.Input(shape=(8, 8, 12))
conv1= layers.Conv2D(10, 3, activation='relu')
conv2 = layers.Conv2D(10, 3, activation='relu')
pooling1 = layers.MaxPooling2D(pool_size=(2, 2), strides=None, padding="valid", data_format=None,)
pooling2 = layers.MaxPooling2D(pool_size=(2, 2), strides=None, padding="valid", data_format=None,)
flatten = keras.layers.Flatten(data_format=None)
x = conv1(board_inputs)
x = pooling1(x)
x = conv2(x)
x = flatten(x)
piece_output = layers.Dense(12,name = 'piece')(x)
alpha_output = layers.Dense(7,name = 'alpha')(x)
number_output = layers.Dense(7,name = 'number')(x)
model = keras.Model(inputs=board_inputs, outputs=[piece_output,alpha_output,number_output], name="chess_ai_v3")
model.compile(
loss=keras.losses.mse,
optimizer=keras.optimizers.Adam(),
metrics=None,
)
keras.utils.plot_model(model, "multi_input_and_output_model.png", show_shapes=True)
history = model.fit(
trans_data[:len(trans_data)],
{"piece": pieces, "alpha": alphas,"number": numbers},
epochs=2,
batch_size=32,
)
# history = model.fit(trans_data[:len(trans_data)],pieces[:len(trans_data)],batch_size=64, epochs=1000)
# print(type(numbers[0]))
Run Code Online (Sandbox Code Playgroud)
小智 5
我能够使用下面的代码重现您的错误。错误与 Keras 上的多输入/输出无关。当我们将输入传递为或list of array键入时,会出现此错误。我在用。array of listdictmodel.fit()tensorflow version 2.2.0
重现错误的代码 -
import numpy as np
import tensorflow as tf
from tensorflow import keras
data_a = [300, 455, 350, 560, 700, 800, 200, 250]
labels = [455, 350, 560, 700, 800, 200, 250, 300]
data_a = np.reshape(data_a, (8, 1, 1))
inputs = keras.layers.Input(shape=(1, 1))
x = keras.layers.Dense(40, activation='relu')(inputs)
output = keras.layers.Dense(1, activation='sigmoid')(x)
model = keras.models.Model(inputs=inputs, outputs=output)
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.fit(data_a,labels, epochs=10, steps_per_epoch=4)
Run Code Online (Sandbox Code Playgroud)
输出 -
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-85-2b4ecdfa5a74> in <module>()
17 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
18
---> 19 model.fit(data_a,labels, epochs=10, steps_per_epoch=4)
3 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/data_adapter.py in select_data_adapter(x, y)
961 "Failed to find data adapter that can handle "
962 "input: {}, {}".format(
--> 963 _type_name(x), _type_name(y)))
964 elif len(adapter_cls) > 1:
965 raise RuntimeError(
ValueError: Failed to find data adapter that can handle input: <class 'numpy.ndarray'>, (<class 'list'> containing values of types {"<class 'int'>"})
Run Code Online (Sandbox Code Playgroud)
list of arrays另外,如果您传递如下数据-
data_a = [np.array(300), np.array(455), np.array(350), np.array(560), np.array(700), np.array(800), np.array(200), np.array(250)]
Run Code Online (Sandbox Code Playgroud)
然后你会得到错误 -
ValueError: Failed to find data adapter that can handle input: (<class 'list'> containing values of types {"<class 'numpy.ndarray'>"}), (<class 'list'> containing values of types {"<class 'int'>"}).
Run Code Online (Sandbox Code Playgroud)
另外,如果您将数据作为 dict 类型传递 -
data_a = {'a':300, 'b':455, 'c':350, 'd':560, 'e':700, 'f':800, 'g':200, 'h':250}
Run Code Online (Sandbox Code Playgroud)
然后你会得到错误 -
ValueError: Failed to find data adapter that can handle input: (<class 'dict'> containing {"<class 'str'>"} keys and {"<class 'int'>"} values), (<class 'list'> containing values of types {"<class 'int'>"})
Run Code Online (Sandbox Code Playgroud)
解决方案 -当我将数据转换为相同类型 -array of array或时,错误已修复list of list。
修改的,
data_a = [300, 455, 350, 560, 700, 800, 200, 250]
labels = [455, 350, 560, 700, 800, 200, 250, 300]
Run Code Online (Sandbox Code Playgroud)
到
data_a = np.array([300, 455, 350, 560, 700, 800, 200, 250])
labels = np.array([455, 350, 560, 700, 800, 200, 250, 300])
Run Code Online (Sandbox Code Playgroud)
固定代码 -
import numpy as np
import tensorflow as tf
from tensorflow import keras
data_a = np.array([300, 455, 350, 560, 700, 800, 200, 250])
labels = np.array([455, 350, 560, 700, 800, 200, 250, 300])
data_a = np.reshape(data_a, (8, 1, 1))
inputs = keras.layers.Input(shape=(1, 1))
x = keras.layers.Dense(40, activation='relu')(inputs)
output = keras.layers.Dense(1, activation='sigmoid')(x)
model = keras.models.Model(inputs=inputs, outputs=output)
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.fit(data_a,labels, epochs=10, steps_per_epoch=4, verbose=0)
print("Ran Successfully")
Run Code Online (Sandbox Code Playgroud)
输出 -
Ran Successfully
Run Code Online (Sandbox Code Playgroud)
另外回答一下你的另一个问题,
如果我没有记错的话,我相信网络不接受一种热编码作为合适的输出。有谁知道这个错误的解决方法?
下面是我正在做的一个简单的例子Ytrain = np_utils.to_categorical(Ytrain)
完整代码 -
import tensorflow as tf
print(tf.__version__)
import numpy as np
from tensorflow.keras import utils as np_utils
Xtrain = np.random.randint(0, 100, size=(150, 10, 1))
Ytrain = np.random.choice([0,1, 2], size=(150, 1))
Ytrain = np_utils.to_categorical(Ytrain)
print(Ytrain.shape)
input_shape = (10, 1)
input_layer = tf.keras.layers.Input(input_shape)
conv_x = tf.keras.layers.Conv1D(filters=32, kernel_size=10, strides = 1, padding='same')(input_layer)
conv_x = tf.keras.layers.BatchNormalization()(conv_x)
conv_x = tf.keras.layers.Activation('relu')(conv_x)
g_pool = tf.keras.layers.GlobalAvgPool1D()(conv_x)
output_layer = tf.keras.layers.Dense(3, activation='softmax')(g_pool)
model = tf.keras.models.Model(inputs= input_layer, outputs = output_layer)
model.summary()
model.compile(loss='categorical_crossentropy', optimizer= tf.keras.optimizers.Adam(),
metrics=['accuracy'])
hist = model.fit(Xtrain, Ytrain, batch_size= 5, epochs= 10, verbose= 0)
print("Ran Successfully")
Run Code Online (Sandbox Code Playgroud)
输出 -
2.2.0
(150, 3)
Model: "model_13"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_21 (InputLayer) [(None, 10, 1)] 0
_________________________________________________________________
conv1d_9 (Conv1D) (None, 10, 32) 352
_________________________________________________________________
batch_normalization_15 (Batc (None, 10, 32) 128
_________________________________________________________________
activation_9 (Activation) (None, 10, 32) 0
_________________________________________________________________
global_average_pooling1d_9 ( (None, 32) 0
_________________________________________________________________
dense_14 (Dense) (None, 3) 99
=================================================================
Total params: 579
Trainable params: 515
Non-trainable params: 64
_________________________________________________________________
Ran Successfully
Run Code Online (Sandbox Code Playgroud)
希望这能回答您的问题。快乐学习。
| 归档时间: |
|
| 查看次数: |
2333 次 |
| 最近记录: |