如何在 Pandas 数据框中进行 SQL 样式聚合

cph*_*sto 2 python dataframe pandas

我希望SQL在 Python 中有一个样式聚合。

# Example DataFrame
df = pd.DataFrame({'ID':[1,1,2,2,2],
                   'revenue':[1,3,5,1,5],
                   'month':['2012-01-01','2012-01-01','2012-03-01','2014-01-01','2012-01-01']})

print(df)
   ID       month  revenue
0   1  2012-01-01        1
1   1  2012-01-01        3
2   2  2012-03-01        5
3   2  2014-01-01        1
4   2  2012-01-01        5
Run Code Online (Sandbox Code Playgroud)

现在,我想计算出总revenue的唯一编号months和第一month每一个ID。我得到了我想要的数字,但不是列名样式,因为它们分布在两行中。

df = df.groupby(['ID']).agg({'revenue':'sum','month':['nunique','first']}).reset_index()
print(df)    
  ID revenue   month            
         sum nunique       first
0  1       4       1  2012-01-01
1  2      11       3  2012-03-01
Run Code Online (Sandbox Code Playgroud)

普通的 SQL 脚本类似于以下伪代码 -

select ID, sum(revenue) as revenue, count(month) as distinct_m, first(month) as first_m from table group by ID ...
Run Code Online (Sandbox Code Playgroud)

我想要的输出:

   ID    revenue  distinct_m     first_m
0  1           4           1  2012-01-01
1  2          11           3  2012-03-01
Run Code Online (Sandbox Code Playgroud)

Ch3*_*teR 5

你可以试试这个。

df.groupby('ID').agg(revenue = ('revenue','sum'),
                     distinct_m = ('month','nunique'),
                     first_m = ('month','first')).reset_index()

ID    revenue  distinct_m     first_m
1         4           1  2012-01-01
2        11           3  2012-03-01
Run Code Online (Sandbox Code Playgroud)