如何从 shell 脚本中捕获 Spark 错误

Lay*_*ang 2 amazon-web-services amazon-data-pipeline apache-spark

我在 AWS Data Pipeline 中有一个管道,它运行一个名为 shell.sh 的 shell 脚本:

$ spark-submit transform_json.py


Running command on cluster...
[54.144.10.162] Running command...
[52.206.87.30] Running command...
[54.144.10.162] Command complete.
[52.206.87.30] Command complete.
run_command finished in 0:00:06.
Run Code Online (Sandbox Code Playgroud)

AWS Data Pipeline 控制台显示作业已“完成”,但在 stderr 日志中,我看到作业实际上已中止:

Caused by: com.amazonaws.services.s3.model.AmazonS3Exception: Status Code: 404, AWS Service: Amazon S3, AWS Request ID: xxxxx, AWS Error Code: null, AWS Error Message: Not Found...        
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 5.0 failed 1 times, most recent failure: Lost task 0.0 in stage 5.0 (TID 5, localhost, executor driver): org.apache.spark.SparkException: Task failed while writing rows.
    ...
        20/05/22 11:42:47 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
        20/05/22 11:42:47 INFO MemoryStore: MemoryStore cleared
        20/05/22 11:42:47 INFO BlockManager: BlockManager stopped
        20/05/22 11:42:47 INFO BlockManagerMaster: BlockManagerMaster stopped
        20/05/22 11:42:47 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
        20/05/22 11:42:47 INFO SparkContext: Successfully stopped SparkContext
        20/05/22 11:42:47 INFO ShutdownHookManager: Shutdown hook called
Run Code Online (Sandbox Code Playgroud)

我对数据管道和 Spark 有点陌生;无法理解幕后实际发生的事情。如何让 shell 脚本捕获SparkException?

Ram*_*ram 6

像下面的例子一样尝试......

您的 shell 脚本可以捕获这样的错误代码......其中非零退出代码是错误的

$?是最近执行的命令的退出状态;按照惯例,0 表示成功,其他任何表示失败。


spark-submit transform_json.py


 ret_code=$?
   if [ $ret_code -ne 0 ]; then 
      exit $ret_code
   fi

Run Code Online (Sandbox Code Playgroud)

您必须编码以sys.exit(-1)在错误条件下返回退出代码。检查这个python异常处理...

在 Python 中检查此退出代码

  • 我想我能够弄清楚,我在脚本的开头添加了“set -e”,并将命令保留为“spark-submit transform_json.py”。现在正在工作。不过谢谢! (2认同)