Jupyter Notebook 访问本地数据集时引发用户警告

Onu*_*bek 3 computer-vision neural-network python-3.x conv-neural-network jupyter

我在本地运行我的笔记本以使用我自己的 GPU。与 Colab 不同,我在本地实例方面遇到了一些问题。当我运行这个单元格时:

\n\n
np.random.seed(42)\ndata = ImageList.from_folder(path).split_by_rand_pct(valid_pct=0.2).label_from_re(pat=file_parse).transform(size=224).databunch()\n
Run Code Online (Sandbox Code Playgroud)\n\n

I\xe2\x80\x99m 收到此错误:

\n\n
/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. \n  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "\n/home/onur/.local/lib/

小智 5

这似乎是版本问题。有两种方法可以解决这个问题。

  1. 一种是使用兼容版本,您可以通过运行以下命令来实现:

pip install "torch==1.4" "torchvision==0.5.0"

  1. 另一件事是recompute_scale_factor=True在第 540 行设置fastai/vision/image.py

替换F.interpolate(x[None], scale_factor=1/d, mode='area')F.interpolate(x[None], scale_factor=1/d, mode='area', recompute_scale_factor=True)