use*_*668 6 parallel-processing r machine-learning neural-network r-caret
假设我将caret在 R 中进行培训,但我想将此培训分为两个运行会话。
library(mlbench)
data(Sonar)
library(caret)
set.seed(998)
inTraining <- createDataPartition(Sonar$Class, p = .75, list = FALSE)
training <- Sonar[ inTraining,]
testing  <- Sonar[-inTraining,]
# First run session
nn.partial <- train(Class ~ ., data = training, 
                method = "nnet",
                 max.turns.of.iteration=5) # Non-existent parameter. But represents my goal
让我们假设nn整个对象我只有一个部分对象,它在第 5 回合(即nn.partial)之前具有训练信息。因此,将来我可以运行以下代码来完成训练工作:
library(mlbench)
data(Sonar)
library(caret)
set.seed(998)
inTraining <- createDataPartition(Sonar$Class, p = .75, list = FALSE)
training <- Sonar[ inTraining,]
testing  <- Sonar[-inTraining,]
nn <- train(Class ~ ., data = training, 
                 method = "nnet",
                 previous.training=nn.partial) # Non-existent parameter. But represents my goal
我知道函数中不存在max.turns.of.iteration和。我只是尽力在代码中表示如果它已经在函数中实现,那么实现我的目标的理想世界是什么。然而,由于参数不存在,有没有办法通过以某种方式欺骗函数来实现这一目标(即在多次运行中进行插入符号训练)?previous.trainingtraintrain
我尝试使用该trainControl功能但没有成功。
t.control <- trainControl(repeats=5)
nn <- train(Class ~ ., data = training, 
                 method = "nnet",
trControl = t.control)
通过这样做,迭代次数仍然远高于 5,正如我想在我的示例中获得的那样。
我几乎可以肯定,这在插入符号当前的基础设施中实施起来非常复杂。但是,我将向您展示如何使用 mlr3 实现这种开箱即用的功能。
示例所需的包
library(mlr3)
library(mlr3tuning)
library(paradox)
获取示例任务并定义要调整的学习器:
task_sonar <- tsk('sonar')
learner <- lrn('classif.rpart', predict_type = 'prob')
定义要调整的超参数:
ps <- ParamSet$new(list(
  ParamDbl$new("cp", lower = 0.001, upper = 0.1),
  ParamInt$new("minsplit", lower = 1, upper = 10)
))
定义调谐器和重采样策略
tuner <- tnr("random_search")
cv3 <- rsmp("cv", folds = 3)
定义调整实例
instance <- TuningInstance$new(
  task = task_sonar,
  learner = learner,
  resampling = cv3,
  measures = msr("classif.auc"),
  param_set = ps,
  terminator = term("evals", n_evals = 100) #one can combine multiple terminators such as clock time, number of evaluations, early stopping (stagnation), performance reached - ?Terminator
)
调:
tuner$tune(instance)
现在一秒钟后按停止以停止 Rstudio 中的任务
instance$archive()
    nr batch_nr  resample_result task_id    learner_id resampling_id iters params tune_x warnings errors classif.auc
 1:  1        1 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7105586
 2:  2        2 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7372720
 3:  3        3 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7335368
 4:  4        4 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7335368
 5:  5        5 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7276246
 6:  6        6 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7111217
 7:  7        7 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.6915560
 8:  8        8 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7452875
 9:  9        9 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7372720
10: 10       10 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7172328
就我而言,它完成了 10 次随机搜索迭代。例如,您现在可以调用
save.image()
关闭 RStudio 并重新打开同一个项目
或在您希望保留的对象上使用  saveRDS/readRDS
saveRDS(instance, "i.rds")
instance <- readRDS("i.rds")
加载所需的包后继续训练
tuner$tune(instance)
几秒钟后再次停止:
就我而言,它完成了额外的 12 次迭代:
instance$archive()
    nr batch_nr  resample_result task_id    learner_id resampling_id iters params tune_x warnings errors classif.auc
 1:  1        1 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7105586
 2:  2        2 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7372720
 3:  3        3 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7335368
 4:  4        4 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7335368
 5:  5        5 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7276246
 6:  6        6 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7111217
 7:  7        7 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.6915560
 8:  8        8 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7452875
 9:  9        9 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7372720
10: 10       10 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7172328
11: 11       11 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7325289
12: 12       12 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7105586
13: 13       13 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7215133
14: 14       14 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.6915560
15: 15       15 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.6915560
16: 16       16 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7335368
17: 17       17 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7276246
18: 18       18 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7111217
19: 19       19 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7172328
20: 20       20 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7276246
21: 21       21 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7105586
22: 22       22 <ResampleResult>   sonar classif.rpart            cv     3 <list> <list>        0      0   0.7276246
再次运行它而不按停止
tuner$tune(instance)
它将完成 100 次评估
限制:上面的示例将调整(超参数的评估)拆分为多个会话)。然而,它不会将一个训练实例分成多个会话——在 R 中很少有包支持这种事情——keras/tensorflow 是我所知道的唯一一个。
然而,不管算法的一个训练实例的长度如何,这种算法的调整(超参数的评估)需要更多的时间,因此能够像上面的例子那样暂停/恢复调整更加有利。
如果你觉得这很有趣,这里有一些学习 mlr3 的资源
https://mlr3book.mlr-org.com/ 
https://mlr3gallery.mlr-org.com/
也看看 mlr3pipelines - https://mlr3pipelines.mlr-org.com/articles/introduction.html
| 归档时间: | 
 | 
| 查看次数: | 201 次 | 
| 最近记录: |