St_*_*ual 5 python dataframe pandas
我有以下数据框:
Row Bid_price Bid_volume Ask_price Ask_volume
2 2999.0 786.7 -500.0 1403.2
3 3000.0 786.7 -499.9 1407.2
4 2950.0 787.3 -250.1 1407.2
---------------------
56 125.1 2691 36.9 3113.1
57 125 2691.1 37 3133.1
---------------------
117 41.4 3029.7 2999 3835.7
118 40.05 3029.7 3000 3835.7
---------------------
123 39.4 3129.7 NaN NaN
124 36.1 3129.7 NaN NaN
125 36 3134.7 NaN NaN
Run Code Online (Sandbox Code Playgroud)
我需要取第一对Bid_price and Bid_volume (2999.0 and 786.7)并与所有对进行比较Ask_price and Ask_volume。只要Bid_volume < Ask_volume AND Bid_price > Ask_price我跳到下一对Bid_price and Bid_volume并再次与所有对Ask_price and Ask_volume. Bid_Price减少,Bid_Volume增加,Ask_Price增加,Ask_Volume增加。Bid_Price, Bid_Volume具有相同的长度,但Ask_Price和Ask_Volume更短。
输出应该是第一个实例 where Bid_volume is > Ask_volume AND Bid_price < Ask_price,因此满足条件。这是在壳体线124为一对Bid_Price and Bid_Volume,其与匹配线56为一对Ask_Price and Ask_Volume。
所需的输出应该是:
Row Bid_price Bid_volume
124 36.1 3129.7
Row Ask_price Ask_volume
56 36.9 3113.1
Run Code Online (Sandbox Code Playgroud)
我的问题是我只能评估每一行的条件。这不返回任何内容:
BidAsk = BidAsk[(BidAsk["Bid_volume"] > BidAsk["Ask_volume"]) & (BidAsk["Bid_price"] < BidAsk["Ask_price"])]
BidAsk[["Bid_price","Bid_volume"]]
Run Code Online (Sandbox Code Playgroud)
这在这里给出了一个回溯错误:
BidAsk = BidAsk.where((BidAsk["Bid_volume"] > BidAsk["Ask_volume"]) & (BidAsk["Bid_Price"] < BidAsk["Ask_Price"]))
BidAsk[["Bid_price", "Bid_volume"]]
Run Code Online (Sandbox Code Playgroud)
非常感谢任何帮助。谢谢!
我希望我理解正确,这个脚本会找到Bid_price并且Bid_volume满足条件Bid_volume is > Ask_volume AND Bid_price < Ask_price。
如果我有这个数据框:
Bid_price Bid_volume Ask_price Ask_volume
0 2999.0 786.7 -500.0 1403.2
1 3000.0 786.7 -499.9 1407.2
2 2950.0 787.3 -250.1 1407.2
3 2500.0 792.8 -250.0 1593.2
4 2000.0 798.9 -200.1 1593.2
5 1400.0 2000.0 1200.0 1600.0
6 36.1 3129.7 NaN NaN
Run Code Online (Sandbox Code Playgroud)
然后:
import pandas as pd
from io import StringIO
txt = '''Bid_price Bid_volume Ask_price Ask_volume
2999.0 786.7 -500.0 1403.2
3000.0 786.7 -499.9 1407.2
2950.0 787.3 -250.1 1407.2
2500.0 792.8 -250.0 1593.2
2000.0 798.9 -200.1 1593.2
1400.0 2000.0 1200.0 1600.0
36.1 3129.7 '''
df = pd.read_fwf(StringIO(txt))
max_price = df.Ask_price.max()
max_volume = df.Ask_volume.max()
mask = pd.concat([df.Bid_price < max_price, df.Bid_volume > max_volume], axis=1).all(axis=1)
print( df.loc[mask, ['Bid_price', 'Bid_volume']].head(1) )
Run Code Online (Sandbox Code Playgroud)
印刷:
Bid_price Bid_volume
6 36.1 3129.7
Run Code Online (Sandbox Code Playgroud)
编辑(根据更新的问题):
import pandas as pd
from io import StringIO
txt = ''' Row Bid_price Bid_volume Ask_price Ask_volume
2 2999.0 786.7 -500.0 1403.2
3 3000.0 786.7 -499.9 1407.2
4 2950.0 787.3 -250.1 1407.2
56 125.1 2691 36.9 3113.1
57 125 2691.1 37 3133.1
117 41.4 3029.7 2999 3835.7
118 40.05 3029.7 3000 3835.7
123 39.4 3129.7 NaN NaN
124 36.1 3129.7 NaN NaN
125 36 3134.7 NaN NaN'''
df = pd.read_fwf(StringIO(txt))
def get_indexes(df):
for idx1, bid_price, bid_volume in zip(df.index, df.Bid_price, df.Bid_volume):
for idx2, ask_price, ask_volume in zip(df.index, df.Ask_price, df.Ask_volume):
if bid_volume > ask_volume and bid_price < ask_price:
return idx1, idx2, bid_price, bid_volume, ask_price, ask_volume
print(df)
print()
result = get_indexes(df)
if result:
print('Bid Price =', result[2])
print('Bid Volume =', result[3])
print('Ask Price =', result[4])
print('Ask Volume =', result[5])
print('Index bid =', result[0])
print('Index ask =', result[1])
Run Code Online (Sandbox Code Playgroud)
印刷:
Row Bid_price Bid_volume Ask_price Ask_volume
0 2 2999.00 786.7 -500.0 1403.2
1 3 3000.00 786.7 -499.9 1407.2
2 4 2950.00 787.3 -250.1 1407.2
3 56 125.10 2691.0 36.9 3113.1
4 57 125.00 2691.1 37.0 3133.1
5 117 41.40 3029.7 2999.0 3835.7
6 118 40.05 3029.7 3000.0 3835.7
7 123 39.40 3129.7 NaN NaN
8 124 36.10 3129.7 NaN NaN
9 125 36.00 3134.7 NaN NaN
Bid Price = 36.1
Bid Volume = 3129.7
Ask Price = 36.9
Ask Volume = 3113.1
Index bid = 8
Index ask = 3
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
78 次 |
| 最近记录: |