Cau*_*der 7 hadoop apache-spark apache-spark-sql pyspark apache-zeppelin
我正在开发一个共享的 Apache Zeppelin 服务器。几乎每天,我尝试运行命令并收到此错误:Job 65 cancelled because SparkContext was shut down
我很想了解有关 SparkContext 关闭原因的更多信息。我的理解是 Zeppelin 是一个 kube 应用程序,它将命令发送到机器进行处理。
当 SparkContext 关闭时,是否意味着我与 Spark 集群的桥接已关闭?而且,如果是这样的话,我怎样才能使火花簇的桥断掉呢?
在此示例中,它发生在我尝试将数据上传到 S3 时。
这是代码
val myfiles = readParquet(
startDate=ew LocalDate(2020, 4, 1),
endDate=ew LocalDate(2020, 4, 7)
)
log_events.createOrReplaceTempView("log_events")
val mySQLDF = spark.sql(s"""
select [6 columns]
from myfiles
join [other table]
on [join_condition]
"""
)
mySQLDF.write.option("maxRecordsPerFile", 1000000).parquet(path)
// mySQLDF has 3M rows and they're all strings or dates
Run Code Online (Sandbox Code Playgroud)
这是堆栈跟踪错误
org.apache.spark.SparkException: Job aborted.
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:198)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:159)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:104)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:102)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.doExecute(commands.scala:122)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:156)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:80)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:80)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:676)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:676)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:676)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:285)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:271)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:229)
at org.apache.spark.sql.DataFrameWriter.parquet(DataFrameWriter.scala:566)
... 48 elided
Caused by: org.apache.spark.SparkException: Job 44 cancelled because SparkContext was shut down
at org.apache.spark.scheduler.DAGScheduler$$anonfun$cleanUpAfterSchedulerStop$1.apply(DAGScheduler.scala:972)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$cleanUpAfterSchedulerStop$1.apply(DAGScheduler.scala:970)
at scala.collection.mutable.HashSet.foreach(HashSet.scala:78)
at org.apache.spark.scheduler.DAGScheduler.cleanUpAfterSchedulerStop(DAGScheduler.scala:970)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onStop(DAGScheduler.scala:2286)
at org.apache.spark.util.EventLoop.stop(EventLoop.scala:84)
at org.apache.spark.scheduler.DAGScheduler.stop(DAGScheduler.scala:2193)
at org.apache.spark.SparkContext$$anonfun$stop$6.apply$mcV$sp(SparkContext.scala:1949)
at org.apache.spark.util.Utils$.tryLogNonFatalError(Utils.scala:1340)
at org.apache.spark.SparkContext.stop(SparkContext.scala:1948)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend$MonitorThread.run(YarnClientSchedulerBackend.scala:121)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:777)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:167)
... 70 more
Run Code Online (Sandbox Code Playgroud)
您的工作在写入步骤中被中止。Job aborted.是导致 Spark 上下文关闭的异常消息。
考虑优化写入步骤,maxRecordsPerFile可能是罪魁祸首;也许尝试一个更低的数字..您当前在一个文件中有 1M 条记录!
一般来说,Job ${job.jobId} cancelled because SparkContext was shut down仅意味着这是一个异常,导致 DAG 无法继续,需要 Error out。Spark 调度程序在遇到异常时会抛出此错误,这可能是代码中未处理的异常或由于任何其他原因导致作业失败。当 DAG 调度程序停止时,整个应用程序将停止(此消息是清理的一部分)。
对于你的问题——
当 SparkContext 关闭时,是否意味着我与 Spark 集群的桥接已关闭?
SparkContext 代表与 Spark 集群的连接,因此如果它死了,则意味着您无法在其上运行作业,因为您丢失了链接!在 Zepplin 上,您只需重新启动 SparkContext(菜单 -> Interpreter -> Spark Interpreter -> restart)
而且,如果是这样的话,我怎样才能使火花簇的桥断掉呢?
在作业中出现 SparkException/Error 或手动使用sc.stop()
| 归档时间: |
|
| 查看次数: |
8569 次 |
| 最近记录: |