熊猫:按组设置差异

wwl*_*wwl 3 python pandas

我有一个非常大的数据集,其中包含每个月每个团队的成员。我想找到每个团队的增删改查。因为我的数据集非常大,所以我尝试尽可能多地使用内置函数。

我的数据集如下所示:

  month team    members
0   0   A   X, Y, Z
1   1   A   X, Y
2   2   A   W, X, Y
3   0   B   D, E
4   1   B   D, E, F
5   2   B   F
Run Code Online (Sandbox Code Playgroud)

它由以下代码生成:

num_months = 3
num_teams = 2
obs = num_months*num_teams

df = pd.DataFrame({"month": [i % num_months for i in range(obs)],
                  "team": ['AB'[i // num_months] for i in range(obs)],
                   "members": ["X, Y, Z", "X, Y", "W, X, Y", "D, E", "D, E, F", "F"]})
df
Run Code Online (Sandbox Code Playgroud)

结果应该是这样的:

    month   team    members additions   deletions
0   0       A       X, Y, Z None    None
1   1       A       X, Y    None    Z
2   2       A       W, X, Y W       None
3   0       B       D, E    None    None
4   1       B       D, E, F F       None
5   2       B       F       None    D, E
Run Code Online (Sandbox Code Playgroud)

或在 Python 代码中

df = pd.DataFrame({"month": [i % num_months for i in range(obs)],
                  "team": ['AB'[i // num_months] for i in range(obs)],
                   "members": ["X, Y, Z", "X, Y", "W, X, Y", "D, E", "D, E, F", "F"],
                  "additions": [None, None, "W", None, "F", None],
                   "deletions": [None, "Z", None, None, None, "D, E"]
                  })
Run Code Online (Sandbox Code Playgroud)

立即想到的一种技术是创建一个新列,显示每个组中成员滞后值,然后获取两列之间的集合差异(双向)。

有没有办法使用 Pandas 内置函数在列之间设置差异?

我还应该尝试其他技术吗?

Tre*_*ney 5

使用setgroupbyapply,和shift

  • 为了效率:
    • 转换membersset类型,因为-是不受支持的操作数,这将导致TypeError.
    • 离开additionsdeletions作为set类型

使用 apply

  • 使用 60000 行的数据框:
    • 91.4 ms ± 2.77 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
# clean the members column
df.members = df.members.str.replace(' ', '').str.split(',').map(set)

# create del and add
df['deletions'] = df.groupby('team')['members'].apply(lambda x: x.shift() - x)
df['additions'] = df.groupby('team')['members'].apply(lambda x: x - x.shift())

# result
 month team    members additions deletions
     0    A  {Z, X, Y}       NaN       NaN
     1    A     {X, Y}        {}       {Z}
     2    A  {W, X, Y}       {W}        {}
     0    B     {D, E}       NaN       NaN
     1    B  {D, F, E}       {F}        {}
     2    B        {F}        {}    {D, E}
Run Code Online (Sandbox Code Playgroud)

更有效率

  • pandas.DataFrame.diff
  • 使用 60000 行的数据框:
    • 60.7 ms ± 3.54 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
df['deletions'] = df.groupby('team')['members'].diff(periods=-1).shift()
df['additions'] = df.groupby('team')['members'].diff()
Run Code Online (Sandbox Code Playgroud)