Mas*_*dam 5 python caching video-streaming redis pytorch
我有这个代码属于这里feature_extractor.py文件夹的一部分:
import torch
import torchvision.transforms as transforms
import numpy as np
import cv2
from .model import Net
class Extractor(object):
def __init__(self, model_path, use_cuda=True):
self.net = Net(reid=True)
self.device = "cuda" if torch.cuda.is_available() and use_cuda else "cpu"
state_dict = torch.load(model_path, map_location=lambda storage, loc: storage)['net_dict']
self.net.load_state_dict(state_dict)
print("Loading weights from {}... Done!".format(model_path))
self.net.to(self.device)
self.size = (64, 128)
self.norm = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
def _preprocess(self, im_crops):
def _resize(im, size):
return cv2.resize(im.astype(np.float32) / 255., size)
im_batch = torch.cat([self.norm(_resize(im, self.size)).unsqueeze(0) for im in im_crops], dim=0).float()
return im_batch
def __call__(self, im_crops):
im_batch = self._preprocess(im_crops)
with torch.no_grad():
im_batch = im_batch.to(self.device)
features = self.net(im_batch)
return features.cpu().numpy()
if __name__ == '__main__':
img = cv2.imread("demo.jpg")[:, :, (2, 1, 0)]
extr = Extractor("checkpoint/ckpt.t7")
feature = extr(img)
print(feature.shape)
Run Code Online (Sandbox Code Playgroud)
现在想象一下有 200 个请求排成一排进行。每次请求加载模型的过程使得代码运行缓慢。
所以我认为将 pytorch 模型保存在缓存中可能是个好主意。我是这样修改的:
from redis import Redis
import msgpack as msg
r = Redis('111.222.333.444')
class Extractor(object):
def __init__(self, model_path, use_cuda=True):
try:
self.net = msg.unpackb(r.get('REID_CKPT'))
finally:
self.net = Net(reid=True)
self.device = "cuda" if torch.cuda.is_available() and use_cuda else "cpu"
state_dict = torch.load(model_path, map_location=lambda storage, loc: storage)['net_dict']
self.net.load_state_dict(state_dict)
print("Loading weights from {}... Done!".format(model_path))
self.net.to(self.device)
packed_net = msg.packb(self.net)
r.set('REID_CKPT', packed_net)
self.size = (64, 128)
self.norm = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
Run Code Online (Sandbox Code Playgroud)
不幸的是,这个错误出现了:
File "msgpack/_packer.pyx", line 286, in msgpack._cmsgpack.Packer.pack
File "msgpack/_packer.pyx", line 292, in msgpack._cmsgpack.Packer.pack
File "msgpack/_packer.pyx", line 289, in msgpack._cmsgpack.Packer.pack
File "msgpack/_packer.pyx", line 283, in msgpack._cmsgpack.Packer._pack
TypeError: can not serialize 'Net' object
Run Code Online (Sandbox Code Playgroud)
原因显然是因为它不能将 Net 对象(pytorch nn.Module类)转换为字节。
如何有效地将 pytorch 模型保存在缓存中(或以某种方式将其保存在 RAM 中)并为每个请求调用它?
谢谢大家。
| 归档时间: |
|
| 查看次数: |
304 次 |
| 最近记录: |