我正在尝试https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html中的 pytorch 示例。当我运行这个示例时,GPU 使用率约为 1%,完成时间为 130 秒而对于 CPU 情况,CPU 使用率约为 90%,完成时间为 79 秒 我的 CPU 是 Intel(R) Core(TM) i7-8700 和我的 GPU 是 NVIDIA GeForce RTX 2070。
我想问CPU运行速度比GPU快是否正常?因为GPU使用量很小(与我从另一个网站看到的相比),这是我运行的代码(与网站类似)。
import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
def run():
# ==================================================================================
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# ==================================================================================
# # functions to show an image
# def imshow(img):
# img = img / 2 + 0.5 # unnormalize
# npimg = img.numpy()
# plt.imshow(np.transpose(npimg, (1, 2, 0)))
# plt.show()
# # get some random training images
# dataiter = iter(trainloader)
# images, labels = dataiter.next()
# # show images
# imshow(torchvision.utils.make_grid(images))
# # print labels
# print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
# ==================================================================================
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
net.to(device)
# ==================================================================================
import torch.optim as optim
criterion = nn.CrossEntropyLoss().to(device)
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# ==================================================================================
for epoch in range(2): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data[0].to(device), data[1].to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs).to(device)
loss = criterion(outputs, labels).to(device)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
# ==================================================================================
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)
# ==================================================================================
# ==================================================================================
# ==================================================================================
if __name__ == '__main__':
run()
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
8889 次 |
最近记录: |