Ash*_*vin 3 python-3.x pytorch bert-language-model huggingface-transformers
我试图在 Huggingface bert 变压器之后添加一个额外的层,所以我BertForSequenceClassification在我的nn.Module网络中使用。但是,与直接加载模型相比,我看到模型给了我随机输出。
模型 1:
from transformers import BertForSequenceClassification
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels = 5) # as we have 5 classes
import torch
from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
input_ids = torch.tensor(tokenizer.encode(texts[0], add_special_tokens=True, max_length = 512)).unsqueeze(0) # Batch size 1
print(model(input_ids))
Run Code Online (Sandbox Code Playgroud)
出去:
(tensor([[ 0.3610, -0.0193, -0.1881, -0.1375, -0.3208]],
grad_fn=<AddmmBackward>),)
Run Code Online (Sandbox Code Playgroud)
模型 2:
import torch
from torch import nn
class BertClassifier(nn.Module):
def __init__(self):
super(BertClassifier, self).__init__()
self.bert = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels = 5)
# as we have 5 classes
# we want our output as probability so, in the evaluation mode, we'll pass the logits to a softmax layer
self.softmax = torch.nn.Softmax(dim = 1) # last dimension
def forward(self, x):
print(x.shape)
x = self.bert(x)
if self.training == False: # in evaluation mode
pass
#x = self.softmax(x)
return x
# create our model
bertclassifier = BertClassifier()
print(bertclassifier(input_ids))
Run Code Online (Sandbox Code Playgroud)
torch.Size([1, 512])
torch.Size([1, 5])
(tensor([[-0.3729, -0.2192, 0.1183, 0.0778, -0.2820]],
grad_fn=<AddmmBackward>),)
Run Code Online (Sandbox Code Playgroud)
应该是同款吧。我在这里发现了类似的问题,但没有合理的解释https://github.com/huggingface/transformers/issues/2770
Bert 是否有一些随机化参数,如果有的话,如何获得可重现的输出?
为什么这两个模型给我不同的输出?有什么我做错了吗?
原因是由于Bert的分类器层的随机初始化。如果你打印你的模型,你会看到
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
(dropout): Dropout(p=0.1, inplace=False)
(classifier): Linear(in_features=768, out_features=5, bias=True)
)
Run Code Online (Sandbox Code Playgroud)
classifier在最后一层有一个,这层是在 之后添加的bert-base。现在,期望您将为下游任务训练该层。
如果您想获得更多见解:
model, li = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels = 5, output_loading_info=True) # as we have 5 classes
print(li)
Run Code Online (Sandbox Code Playgroud)
{'missing_keys': ['classifier.weight', 'classifier.bias'], 'unexpected_keys': ['cls.predictions.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.decoder.weight', 'cls.seq_relationship.weight', 'cls.seq_relationship.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.LayerNorm.bias'], 'error_msgs': []}
Run Code Online (Sandbox Code Playgroud)
您可以看到classifier.weight和bias丢失了,因此每次调用时这些部分都会随机初始化BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels = 5)。
| 归档时间: |
|
| 查看次数: |
783 次 |
| 最近记录: |