use*_*315 6 gpu nvidia docker rapids
我是 Rapids 的新手,很少有使用 conda 的好经验。所以我正在尝试使用容器化版本。我是 Docker 的新手,未知的组合让我无法理清头绪。
我有一个 Ubuntu 18.04 服务器,
# uname -v
#30~18.04.1-Ubuntu SMP Fri Jan 17 06:14:09 UTC 2020
Run Code Online (Sandbox Code Playgroud)
我在上面安装了新版本的 Docker
# apt-get install docker docker-ce docker-ce-cli containerd.io
# docker --version
Docker version 19.03.8, build afacb8b7f0
Run Code Online (Sandbox Code Playgroud)
本机安装了cuda v10.2
# nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2019 NVIDIA Corporation
Built on Wed_Oct_23_19:24:38_PDT_2019
Cuda compilation tools, release 10.2, V10.2.89
Run Code Online (Sandbox Code Playgroud)
和 Python v3.6.9
# python3 --version
Python 3.6.9
Run Code Online (Sandbox Code Playgroud)
如NVIDIA Container Toolkit Quickstart部分所示,我将 nvidia-docker 列表安装到 /etc/apt/sources.list.d/
# curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
# curl -s -L https://nvidia.github.io/nvidia-docker/ubuntu18.04/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
Run Code Online (Sandbox Code Playgroud)
明确替换ubuntu18.04$distribution,因为它是Linux Mint 19.3的Ubuntu 等价物。
按照RAPIDS - Open GPU Data Science 中的启动容器和笔记本服务器说明,我拉取了 0.13-cuda10.2-runtime-ubuntu18.04-py3.6 运行时。
# docker pull rapidsai/rapidsai:0.13-cuda10.2-runtime-ubuntu18.04-py3.6
Run Code Online (Sandbox Code Playgroud)
很长一段时间,几 GB 之后,一切似乎都可以了。(没有警告或错误消息。)此外,它看起来像是在 Docker 中注册的。
# docker images -a
REPOSITORY TAG IMAGE ID CREATED SIZE
rapidsai/rapidsai 0.13-cuda10.2-runtime-ubuntu18.04-py3.6 c7440af853b5 4 days ago 9.26GB
rapidsai/rapidsai cuda10.2-runtime-ubuntu18.04-py3.6 c7440af853b5 4 days ago 9.26GB
Run Code Online (Sandbox Code Playgroud)
但是,我接下来尝试启动笔记本服务器:
# docker run --gpus all --rm -it -p 8888:8888 -p 8787:8787 -p 8786:8786 \
rapidsai/rapidsai:cuda10.0-runtime-ubuntu18.04-py3.6
docker: Error response from daemon: could not select device driver "" with capabilities: [[gpu]].
Run Code Online (Sandbox Code Playgroud)
这似乎令人惊讶,因为检测到两个 GTX 1080 Ti GPU
# nvidia-smi
Fri May 8 16:41:57 2020
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 440.33.01 Driver Version: 440.33.01 CUDA Version: 10.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 108... On | 00000000:08:00.0 Off | N/A |
| 21% 38C P8 10W / 250W | 1MiB / 11178MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 GeForce GTX 108... On | 00000000:42:00.0 Off | N/A |
| 23% 42C P8 10W / 250W | 1MiB / 11177MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
Run Code Online (Sandbox Code Playgroud)
清理完东西后
# docker system prune -a
# apt-get purge docker docker-engine docker.io containerd runc
Run Code Online (Sandbox Code Playgroud)
我重新安装了docker并再次拉取了rapidsai镜像。结果没有改变。
是否与 NVIDIA 驱动程序版本:440.33.01 有冲突?
有什么建议?
感谢您试用 RAPIDS。你碰巧安装了nvidia-container-toolkit吗? https://github.com/NVIDIA/nvidia-docker#quickstart。我在您的步骤中没有看到这一点,如果错过它可能会导致该问题。这是我们在https://rapids.ai/start.html上的先决条件
| 归档时间: |
|
| 查看次数: |
8611 次 |
| 最近记录: |