我下面有 df
Cost,Reve
0,3
4,0
0,0
10,10
4,8
len(df['Cost']) = 300
len(df['Reve']) = 300
Run Code Online (Sandbox Code Playgroud)
我需要划分df['Cost'] / df['Reve']
下面是我的代码
df[['Cost','Reve']] = df[['Cost','Reve']].apply(pd.to_numeric)
Run Code Online (Sandbox Code Playgroud)
我收到错误ValueError: Columns must be same length as key
df['C/R'] = df[['Cost']].div(df['Reve'].values, axis=0)
Run Code Online (Sandbox Code Playgroud)
我收到错误ValueError: Wrong number of items passed 2, placement implies 1
jez*_*ael 11
问题是重复的列名,请验证:
#generate duplicates
df = pd.concat([df, df], axis=1)
print (df)
Cost Reve Cost Reve
0 0 3 0 3
1 4 0 4 0
2 0 0 0 0
3 10 10 10 10
4 4 8 4 8
df[['Cost','Reve']] = df[['Cost','Reve']].apply(pd.to_numeric)
print (df)
# ValueError: Columns must be same length as key
Run Code Online (Sandbox Code Playgroud)
您可以找到此列名称:
print (df.columns[df.columns.duplicated(keep=False)])
Index(['Cost', 'Reve', 'Cost', 'Reve'], dtype='object')
Run Code Online (Sandbox Code Playgroud)
如果列中的相同值可以通过以下方式删除重复项:
df = df.loc[:, ~df.columns.duplicated()]
df[['Cost','Reve']] = df[['Cost','Reve']].apply(pd.to_numeric)
#simplify division
df['C/R'] = df['Cost'].div(df['Reve'])
print (df)
Cost Reve C/R
0 0 3 0.0
1 4 0 inf
2 0 0 NaN
3 10 10 1.0
4 4 8 0.5
Run Code Online (Sandbox Code Playgroud)