使用 Stanza 和 CoreNLPClient 提取名词短语

Jes*_*ABI 3 python nlp stanford-nlp stanford-stanza

我正在尝试使用 Stanza(使用斯坦福 CoreNLP)从句子中提取名词短语。这只能通过 Stanza 中的 CoreNLPClient 模块来完成。

# Import client module
from stanza.server import CoreNLPClient
# Construct a CoreNLPClient with some basic annotators, a memory allocation of 4GB, and port number 9001
client = CoreNLPClient(annotators=['tokenize','ssplit','pos','lemma','ner', 'parse'], memory='4G', endpoint='http://localhost:9001')
Run Code Online (Sandbox Code Playgroud)

这是一个句子的例子,我正在使用tregrex客户端中的函数来获取所有名词短语。Tregex函数dict of dicts在python中返回a 。因此,我需要先处理 的输出,tregrex然后再将其传递给Tree.fromstringNLTK 中的函数,以将名词短语正确提取为字符串。

pattern = 'NP'
text = "Albert Einstein was a German-born theoretical physicist. He developed the theory of relativity."
matches = client.tregrex(text, pattern) ``
Run Code Online (Sandbox Code Playgroud)

因此,我想出了一种方法stanza_phrases,它必须循​​环遍历NLTKdict of dicts的输出tregrex并正确格式化Tree.fromstring

def stanza_phrases(matches):
  Nps = []
  for match in matches:
    for items in matches['sentences']:
      for keys,values in items.items():
        s = '(ROOT\n'+ values['match']+')'
        Nps.extend(extract_phrase(s, pattern))
  return set(Nps)
Run Code Online (Sandbox Code Playgroud)

生成由 NLTK 使用的树

from nltk.tree import Tree
def extract_phrase(tree_str, label):
    phrases = []
    trees = Tree.fromstring(tree_str)
    for tree in trees:
        for subtree in tree.subtrees():
            if subtree.label() == label:
                t = subtree
                t = ' '.join(t.leaves())
                phrases.append(t)

    return phrases
Run Code Online (Sandbox Code Playgroud)

这是我的输出:

{'Albert Einstein', 'He', 'a German-born theoretical physicist', 'relativity',  'the theory', 'the theory of relativity'}
Run Code Online (Sandbox Code Playgroud)

有没有一种方法,我可以让这个更高效的代码用更少的线数(尤其是stanza_phrasesextract_phrase方法)

Sta*_*elp 6

from stanza.server import CoreNLPClient

# get noun phrases with tregex
def noun_phrases(_client, _text, _annotators=None):
    pattern = 'NP'
    matches = _client.tregex(_text,pattern,annotators=_annotators)
    print("\n".join(["\t"+sentence[match_id]['spanString'] for sentence in matches['sentences'] for match_id in sentence]))

# English example
with CoreNLPClient(timeout=30000, memory='16G') as client:
    englishText = "Albert Einstein was a German-born theoretical physicist. He developed the theory of relativity."
    print('---')
    print(englishText)
    noun_phrases(client,englishText,_annotators="tokenize,ssplit,pos,lemma,parse")

# French example
with CoreNLPClient(properties='french', timeout=30000, memory='16G') as client:
    frenchText = "Je suis John."
    print('---')
    print(frenchText)
    noun_phrases(client,frenchText,_annotators="tokenize,ssplit,mwt,pos,lemma,parse")
Run Code Online (Sandbox Code Playgroud)