为累积图添加95%置信区间

Fra*_*fka 6 plot r sum

我想添加一条抛物线,用R表示这个抛硬币图的95%置信限:

x  <- sample(c(-1,1), 60000, replace = TRUE)
plot.ts(cumsum(x), ylim=c(-250,250))
Run Code Online (Sandbox Code Playgroud)

这是我正在寻找的一个例子:图形

更新: @ bill_080的答案非常好.但是我已经计算了10万枚硬币投掷:

str(100ktoss)
num [1:100000] -1 1 1 1 -1 -1 1 -1 -1 -1 ...
Run Code Online (Sandbox Code Playgroud)

而且我真的想在这个情节中添加95%的限制:折腾

plot.ts(cumsum(100ktoss))
Run Code Online (Sandbox Code Playgroud)

花了几个小时来计算我的100K硬币投掷,当我尝试用@ bill_080的代码复制时,我的内存耗尽(100,000).

最后更新:好的.最后一个问题 我有一个几轮累积命中的情节,在一个图表上,每一轮的开始被钳制在零(实际上是1或-1,取决于它是赢还是输).

>str(1.ts)  
Time-Series [1:35] from 1 to 35: 1 2 1 2 3 4 5 4 5 6 ...  
>str(2.ts)  
Time-Series [1:150] from 36 to 185: -1 0 1 0 -1 -2 -1 0 1 2 ...  
Run Code Online (Sandbox Code Playgroud)

我想为每个段添加相同的95%限制,就像这样.现在解决了:

@ bill_080非常感谢.这是最终产品:

附带

bil*_*080 9

试试这个.所有循环都是for循环,因此您可以轻松添加更多计算.

#Set the number of bets and number of trials and % lines
numbet <- 6000 #6000 bets
numtri <- 1000 #Run 1000 trials of the 6000 bets
perlin <- 0.05 #Show the +/- 5% lines on the graph
rantri <- 60 #The 60th trial (just a random trial to be drawn)

#Fill a matrix where the rows are the cumulative bets and the columns are the trials
xcum <- matrix(NA, nrow=numbet, ncol=numtri)
for (i in 1:numtri) {
  x <- sample(c(-1,1), numbet, replace = TRUE)
  xcum[,i] <- cumsum(x)
}

#Plot the trials as transparent lines so you can see the build up
matplot(xcum, type="l", xlab="Number of Bets", ylab="Cumulative Sum", main="Cumulative Results", col=rgb(0.01, 0.01, 0.01, 0.02))
grid()

#Sort the trials of each bet so you can pick out the desired %
xcumsor <- xcum
for (i in 1:numbet) {
  xcumsor[i,] <- xcum[i,order(xcum[i,])]
}

#Draw the upper/lower limit lines and the 50% probability line     
lines(xcumsor[, perlin*numtri], type="l", lwd=2, col=rgb(1, 0.0, 0.0)) #Lower limit
lines(xcumsor[, 0.5*numtri], type="l", lwd=3, col=rgb(0, 1, 0.0)) #50% Line
lines(xcumsor[, (1-perlin)*numtri], type="l", lwd=2, col=rgb(1, 0.0, 0.0)) #Upper limit

#Show one of the trials
lines(xcum[, rantri], type="l", lwd=1, col=rgb(1, 0.8, 0)) #Random trial

#Draw the legend
legend("bottomleft", legend=c("Various Trials", "Single Trial", "50% Probability", "Upper/Lower % Limts"), bg="white", lwd=c(1, 1, 3, 2), col=c("darkgray", "orange", "green", "red"))
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述

编辑1 ================================================ ==========

如果您只是想绘制+/- 5%的线,它只是一个平方根函数.这是代码:

#Set the bet sequence and the % lines
betseq <- 1:100000 #1 to 100,000 bets
perlin <- 0.05 #Show the +/- 5% lines on the graph

#Calculate the Upper and Lower limits using perlin
#qnorm() gives the multiplier for the square root
upplim <- qnorm(1-perlin)*sqrt(betseq)
lowlim <- qnorm(perlin)*sqrt(betseq)

#Get the range for y
yran <- range(upplim, lowlim)

#Plot the upper and lower limit lines
plot(betseq, upplim, ylim=yran, type="l", xlab="", ylab="")
lines(betseq, lowlim)
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述

编辑2 ================================================ ==

要在正确的位置添加抛物线,可能更容易定义函数.请记住,因为新函数(dralim)使用lines,所以在调用之前必须存在绘图dralim.使用一些与编辑1中的代码相同的变量:

#Set the bet sequence and the % lines
betseq <- 0:700 #0 to 700 bets
perlin <- 0.05 #Show the +/- 5% lines on the graph

#Define a function that plots the upper and lower % limit lines
dralim <- function(stax, endx, perlin) {
  lines(stax:endx, qnorm(1-perlin)*sqrt((stax:endx)-stax))
  lines(stax:endx, qnorm(perlin)*sqrt((stax:endx)-stax))
}

#Build the plot area and draw the vertical dashed lines
plot(betseq, rep(0, length(betseq)), type="l", ylim=c(-50, 50), main="", xlab="Trial Number", ylab="Cumulative Hits")
abline(h=0)
abline(v=35, lty="dashed") #Seg 1
abline(v=185, lty="dashed") #Seg 2
abline(v=385, lty="dashed") #Seg 3
abline(v=485, lty="dashed") #Seg 4
abline(v=585, lty="dashed") #Seg 5

#Draw the % limit lines that correspond to the vertical dashed lines by calling the
#new function dralim.
dralim(0, 35, perlin) #Seg 1
dralim(36, 185, perlin) #Seg 2
dralim(186, 385, perlin) #Seg 3
dralim(386, 485, perlin) #Seg 4
dralim(486, 585, perlin) #Seg 5
dralim(586, 701, perlin) #Seg 6
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述