我已经训练了一个 keras CNN 监控指标如下:
METRICS = [
TruePositives(name='tp'),
FalsePositives(name='fp'),
TrueNegatives(name='tn'),
FalseNegatives(name='fn'),
BinaryAccuracy(name='accuracy'),
Precision(name='precision'),
Recall(name='recall'),
AUC(name='auc'),
]
Run Code Online (Sandbox Code Playgroud)
然后是model.compile:
model.compile(optimizer='nadam', loss='binary_crossentropy',
metrics=METRICS)
Run Code Online (Sandbox Code Playgroud)
它工作得很好,我保存了我的 h5 模型(model.h5)。
现在我已经下载了模型,我想在其他脚本中使用它来导入模型:
from keras.models import load_model
model = load_model('model.h5')
model.predict(....)
Run Code Online (Sandbox Code Playgroud)
但在运行期间编译器返回:
ValueError: Unknown metric function: {'class_name': 'TruePositives', 'config': {'name': 'tp', 'dtype': 'float32', 'thresholds': None}}
Run Code Online (Sandbox Code Playgroud)
我应该如何管理这个问题?
先感谢您
当您有自定义指标时,您需要遵循稍微不同的方法。
custom_objects和加载模型compile = False我在这里展示方法
import tensorflow as tf
from tensorflow import keras
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# Custom Loss1 (for example)
#@tf.function()
def customLoss1(yTrue,yPred):
return tf.reduce_mean(yTrue-yPred)
# Custom Loss2 (for example)
#@tf.function()
def customLoss2(yTrue, yPred):
return tf.reduce_mean(tf.square(tf.subtract(yTrue,yPred)))
def create_model():
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy', customLoss1, customLoss2])
return model
# Create a basic model instance
model=create_model()
# Fit and evaluate model
model.fit(x_train, y_train, epochs=5)
loss, acc,loss1, loss2 = model.evaluate(x_test, y_test,verbose=1)
print("Original model, accuracy: {:5.2f}%".format(100*acc)) # Original model, accuracy: 98.11%
# saving the model
model.save('./Mymodel',save_format='tf')
# load the model
loaded_model = tf.keras.models.load_model('./Mymodel',custom_objects={'customLoss1':customLoss1,'customLoss2':customLoss2},compile=False)
# compile the model
loaded_model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy', customLoss1, customLoss2])
# loaded model also has same accuracy, metrics and loss
loss, acc,loss1, loss2 = loaded_model.evaluate(x_test, y_test,verbose=1)
print("Loaded model, accuracy: {:5.2f}%".format(100*acc)) #Loaded model, accuracy: 98.11%
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
1526 次 |
| 最近记录: |