use*_*321 3 dataframe apache-spark pyspark
我有一个 pyspark 数据框,下面是示例行。我试图在 10 分钟内获得最大平均值。我正在尝试使用 Window 函数,但无法实现结果。
这是我的数据框,其中包含 30 分钟的随机数据。我希望输出 3 行,每 10 分钟输出 1 行。
+-------------------+---------+
| event_time|avg_value|
+-------------------+---------+
|2019-12-29 00:01:00| 9.5|
|2019-12-29 00:02:00| 9.0|
|2019-12-29 00:04:00| 8.0|
|2019-12-29 00:06:00| 21.0|
|2019-12-29 00:08:00| 7.0|
|2019-12-29 00:11:00| 8.5|
|2019-12-29 00:12:00| 11.5|
|2019-12-29 00:14:00| 8.0|
|2019-12-29 00:16:00| 31.0|
|2019-12-29 00:18:00| 8.0|
|2019-12-29 00:21:00| 8.0|
|2019-12-29 00:22:00| 16.5|
|2019-12-29 00:24:00| 7.0|
|2019-12-29 00:26:00| 14.0|
|2019-12-29 00:28:00| 7.0|
+-------------------+---------+
Run Code Online (Sandbox Code Playgroud)
我正在使用下面的代码
window_spec = Window.partitionBy('event_time').orderBy('event_time').rangeBetween(-60*10,0)
new_df = data.withColumn('rank', rank().over(window_spec))
new_df.show()
Run Code Online (Sandbox Code Playgroud)
但这段代码给了我以下错误:
pyspark.sql.utils.AnalysisException: 'Window Frame specifiedwindowframe(RangeFrame, -600, currentrow$()) must match the required frame specifiedwindowframe(RowFrame, unboundedpreceding$(), currentrow$());'
Run Code Online (Sandbox Code Playgroud)
我想要的输出是
+-------------------+---------+
| event_time|avg_value|
+-------------------+---------+
|2019-12-29 00:06:00| 21.0|
|2019-12-29 00:16:00| 31.0|
|2019-12-29 00:22:00| 16.5|
+-------------------+---------+
Run Code Online (Sandbox Code Playgroud)
有人可以帮我吗?
TIA。
您可以将 agroupBy与 a 一起使用window。
from pyspark.sql import functions as F
df.groupBy(F.window("event_time","10 minutes"))\
.agg(F.max("avg_value").alias("avg_value")).show()
#+--------------------+---------+
#| window|avg_value|
#+--------------------+---------+
#|[2019-12-29 00:20...| 16.5|
#|[2019-12-29 00:10...| 31.0|
#|[2019-12-29 00:00...| 21.0|
#+--------------------+---------+
Run Code Online (Sandbox Code Playgroud)
要获得event_time您想要的列的确切输出,您可以使用collect_list,array_sort和element_at( spark2.4+ )
from pyspark.sql import functions as F
df.groupBy(F.window("event_time","10 minutes"))\
.agg(F.element_at(F.array_sort(F.collect_list("event_time")),-2).alias("event_time"),\
F.max("avg_value").alias("avg_value")).drop("window").orderBy("event_time").show()
#+-------------------+---------+
#|event_time |avg_value|
#+-------------------+---------+
#|2019-12-29 00:06:00|21.0 |
#|2019-12-29 00:16:00|31.0 |
#|2019-12-29 00:26:00|16.5 |
#+-------------------+---------+
Run Code Online (Sandbox Code Playgroud)
UPDATE:
df.groupBy(F.window("event_time","10 minutes"))\
.agg(F.collect_list(F.struct("event_time","avg_value")).alias("event_time")\
,F.max("avg_value").alias("avg_value"))\
.withColumn("event_time", F.expr("""filter(event_time, x-> x.avg_value=avg_value)"""))\
.select((F.col("event_time.event_time")[0]).alias("event_time"),"avg_value").orderBy("event_time").show()
#+-------------------+---------+
#| event_time|avg_value|
#+-------------------+---------+
#|2019-12-29 00:06:00| 21.0|
#|2019-12-29 00:16:00| 31.0|
#|2019-12-29 00:22:00| 16.5|
#+-------------------+---------+
Run Code Online (Sandbox Code Playgroud)
data = [
('2019-12-29 00:01:00', 9.5,),
('2019-12-29 00:02:00', 9.0,),
('2019-12-29 00:04:00', 8.0,),
('2019-12-29 00:06:00', 21.0,),
('2019-12-29 00:08:00', 7.0,),
('2019-12-29 00:11:00', 8.5,),
('2019-12-29 00:12:00', 11.5,),
('2019-12-29 00:14:00', 8.0,),
('2019-12-29 00:16:00', 31.0,),
('2019-12-29 00:18:00', 8.0,),
('2019-12-29 00:21:00', 8.0,),
('2019-12-29 00:22:00', 16.5,),
('2019-12-29 00:24:00', 7.0,),
('2019-12-29 00:26:00', 14.0,),
('2019-12-29 00:28:00', 7.0,),
]
df = spark.createDataFrame(data, ['event_time', 'avg_value'])
Run Code Online (Sandbox Code Playgroud)
from pyspark.sql import Window
from pyspark.sql.functions import window, max, col
w = Window().partitionBy('group_col')
(
df.
withColumn(
'group_col',
window('event_time', '10 minutes')
).
withColumn(
'max_val',
max(col('avg_value')).over(w)
).
where(
col('avg_value') == col('max_val')
).
drop(
'max_val',
'group_col'
).
orderBy('event_time').
show(truncate=False)
)
+-------------------+---------+
|event_time |avg_value|
+-------------------+---------+
|2019-12-29 00:06:00|21.0 |
|2019-12-29 00:16:00|31.0 |
|2019-12-29 00:22:00|16.5 |
+-------------------+---------+
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
1473 次 |
| 最近记录: |