Nat*_*ton 6 python postgresql sqlalchemy upsert pandas
我从网络资源中抓取了一些数据并将它们全部存储在 Pandas DataFrame 中。现在,为了利用 SQLAlchemy 提供的强大的数据库工具,我想将所述 DataFrame 转换为 Table() 对象,并最终将所有数据 upsert 到 PostgreSQL 表中。如果这是可行的,那么完成这项任务的可行方法是什么?
ped*_*vgp 17
我多次需要这个,最终我为它创建了一个要点。
该函数如下,如果是第一次持久化数据帧,它将创建表,如果表已经存在,它将更新表:
import pandas as pd
import sqlalchemy
import uuid
import os
def upsert_df(df: pd.DataFrame, table_name: str, engine: sqlalchemy.engine.Engine):
"""Implements the equivalent of pd.DataFrame.to_sql(..., if_exists='update')
(which does not exist). Creates or updates the db records based on the
dataframe records.
Conflicts to determine update are based on the dataframes index.
This will set unique keys constraint on the table equal to the index names
1. Create a temp table from the dataframe
2. Insert/update from temp table into table_name
Returns: True if successful
"""
# If the table does not exist, we should just use to_sql to create it
if not engine.execute(
f"""SELECT EXISTS (
SELECT FROM information_schema.tables
WHERE table_schema = 'public'
AND table_name = '{table_name}');
"""
).first()[0]:
df.to_sql(table_name, engine)
return True
# If it already exists...
temp_table_name = f"temp_{uuid.uuid4().hex[:6]}"
df.to_sql(temp_table_name, engine, index=True)
index = list(df.index.names)
index_sql_txt = ", ".join([f'"{i}"' for i in index])
columns = list(df.columns)
headers = index + columns
headers_sql_txt = ", ".join(
[f'"{i}"' for i in headers]
) # index1, index2, ..., column 1, col2, ...
# col1 = exluded.col1, col2=excluded.col2
update_column_stmt = ", ".join([f'"{col}" = EXCLUDED."{col}"' for col in columns])
# For the ON CONFLICT clause, postgres requires that the columns have unique constraint
query_pk = f"""
ALTER TABLE "{table_name}" DROP CONSTRAINT IF EXISTS unique_constraint_for_upsert;
ALTER TABLE "{table_name}" ADD CONSTRAINT unique_constraint_for_upsert UNIQUE ({index_sql_txt});
"""
engine.execute(query_pk)
# Compose and execute upsert query
query_upsert = f"""
INSERT INTO "{table_name}" ({headers_sql_txt})
SELECT {headers_sql_txt} FROM "{temp_table_name}"
ON CONFLICT ({index_sql_txt}) DO UPDATE
SET {update_column_stmt};
"""
engine.execute(query_upsert)
engine.execute(f"DROP TABLE {temp_table_name}")
return True
Run Code Online (Sandbox Code Playgroud)
Gor*_*son 11
如果您使用的是 PostgreSQL 9.5 或更高版本,则可以使用临时表和INSERT ... ON CONFLICT语句执行 UPSERT :
import sqlalchemy as sa
# …
with engine.begin() as conn:
# step 0.0 - create test environment
conn.execute(sa.text("DROP TABLE IF EXISTS main_table"))
conn.execute(
sa.text(
"CREATE TABLE main_table (id int primary key, txt varchar(50))"
)
)
conn.execute(
sa.text(
"INSERT INTO main_table (id, txt) VALUES (1, 'row 1 old text')"
)
)
# step 0.1 - create DataFrame to UPSERT
df = pd.DataFrame(
[(2, "new row 2 text"), (1, "row 1 new text")], columns=["id", "txt"]
)
# step 1 - create temporary table and upload DataFrame
conn.execute(
sa.text(
"CREATE TEMPORARY TABLE temp_table (id int primary key, txt varchar(50))"
)
)
df.to_sql("temp_table", conn, index=False, if_exists="append")
# step 2 - merge temp_table into main_table
conn.execute(
sa.text("""\
INSERT INTO main_table (id, txt)
SELECT id, txt FROM temp_table
ON CONFLICT (id) DO
UPDATE SET txt = EXCLUDED.txt
"""
)
)
# step 3 - confirm results
result = conn.execute(sa.text("SELECT * FROM main_table ORDER BY id")).fetchall()
print(result) # [(1, 'row 1 new text'), (2, 'new row 2 text')]
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
4267 次 |
| 最近记录: |