cod*_*joy 6 python reproducible-research random-seed keras tensorflow
我目前正在训练一个convolutional neural network
使用这样conv2D layer
定义的:
conv1 = tf.keras.layers.Conv2D(filters=64, kernel_size=(3,3), padding='SAME', activation='relu')(inputs)
Run Code Online (Sandbox Code Playgroud)
我的理解是默认 kernel_initializerglorot_uniform
的默认种子为“none”:
tf.keras.layers.Conv2D(
filters, kernel_size, strides=(1, 1), padding='valid', data_format=None,
dilation_rate=(1, 1), activation=None, use_bias=True,
kernel_initializer='glorot_uniform', bias_initializer='zeros',
kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None,
kernel_constraint=None, bias_constraint=None, **kwargs
)
tf.compat.v1.keras.initializers.glorot_uniform(seed=None, dtype=tf.dtypes.float32)
Run Code Online (Sandbox Code Playgroud)
我正在尝试生成可重现的代码,并且已经按照此 StackOverflow 帖子设置了随机种子:
seed_num = 1
os.environ['PYTHONHASHSEED'] = '0'
np.random.seed(seed_num)
rn.seed(seed_num)
session_conf = tf.compat.v1.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
tf.random.set_seed(seed_num)
sess = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph(), config=session_conf)
K.set_session(sess)
Run Code Online (Sandbox Code Playgroud)
tf.random.set_seed
种子号是否glorot_uniform
在 a 内使用conv2D layer
?如果没有,在定义conv2D layer
?时如何定义该种子?
对于每一层,您可以使用内核和偏差初始值设定项的种子。
您可以单独为初始化程序播种,
kernel_initializer=initializers.glorot_uniform(seed=0))
来自文档:
glorot_normal
keras.initializers.glorot_normal(seed=None)
Glorot normal initializer, also called Xavier normal initializer.
It draws samples from a truncated normal distribution centered on 0 with stddev = sqrt(2 / (fan_in + fan_out)) where fan_in is the number of input units in the weight tensor and fan_out is the number of output units in the weight tensor.
Arguments
seed: A Python integer. Used to seed the random generator.
Run Code Online (Sandbox Code Playgroud)