1 python dataflow google-cloud-dataflow apache-beam
我正在 Google Dataflow 上使用 Apache Beam,并通过 lambda 函数调用函数情感,但收到错误消息:函数名称未定义。
output_tweets = (lines
| 'decode' >> beam.Map(lambda x: x.decode('utf-8'))
| 'assign window key' >> beam.WindowInto(window.FixedWindows(10))
| 'batch into n batches' >> BatchElements(min_batch_size=49, max_batch_size=50)
| 'sentiment analysis' >> beam.FlatMap(lambda x: sentiment(x))
)
Run Code Online (Sandbox Code Playgroud)
这是我的 Apache Beam 调用,在最后一行中提到了函数情绪,这给我带来了问题。
函数代码如下(我认为这不重要):
def sentiment(messages):
if not isinstance(messages, list):
messages = [messages]
instances = list(map(lambda message: json.loads(message), messages))
lservice = discovery.build('language', 'v1beta1', developerKey = APIKEY)
for instance in instances['text']:
response = lservice.documents().analyzeSentiment(
body ={
'document': {
'type': 'PLAIN_TEXT',
'content': instance
}
}
).execute()
instance['polarity'] = response['documentSentiment']['polarity']
instance['magnitude'] = response['documentSentiment']['magnitude']
return instances
Run Code Online (Sandbox Code Playgroud)
我得到以下回溯
File "stream.py", line 97, in <lambda>
NameError: name 'sentiment' is not defined [while running 'generatedPtransform-441']
Run Code Online (Sandbox Code Playgroud)
任何想法?
发生此问题的原因有多种
sentiment定义是否存在于与 Beam 管道相同的 Python 文件中。sentiment是在光束管道中调用之前吗?我做了一个快速测试,如下所示,如果遵循上述两项,则可以按预期工作
def testing(messages):
return messages.lower()
windowed_lower_word_counts = (windowed_words
| beam.Map(lambda word: testing(word))
| "count" >> beam.combiners.Count.PerElement())
ib.show(windowed_lower_word_counts, include_window_info=True)
0 b'have' 3 2020-04-19 06:04:39.999999+0000 2020-04-19 06:04:30.000000+0000 (10s) Pane 0
1 b'ransom' 1 2020-04-19 06:04:39.999999+0000 2020-04-19 06:04:30.000000+0000 (10s) Pane 0
2 b'let' 1 2020-04-19 06:04:39.999999+0000 2020-04-19 06:04:30.000000+0000 (10s) Pane 0
3 b'me' 1 2020-04-19 06:04:39.999999+0000 2020-04-19 06:04:30.000000+0000 (10s) Pane 0
Run Code Online (Sandbox Code Playgroud)
如果函数是在调用之后定义的,那么我们会得到如下错误
windowed_lower_word_counts = (windowed_words
| beam.Map(lambda word: testing_after(word))
| "count" >> beam.combiners.Count.PerElement())
ib.show(windowed_lower_word_counts, include_window_info=True)
ERROR:apache_beam.runners.direct.executor:Exception at bundle <apache_beam.runners.direct.bundle_factory._Bundle object at 0x7f478f344820>, due to an exception.
Traceback (most recent call last):
File "apache_beam/runners/common.py", line 954, in apache_beam.runners.common.DoFnRunner.process
File "apache_beam/runners/common.py", line 552, in apache_beam.runners.common.SimpleInvoker.invoke_process
File "/root/apache-beam-custom/packages/beam/sdks/python/apache_beam/transforms/core.py", line 1482, in <lambda>
wrapper = lambda x: [fn(x)]
File "<ipython-input-19-f34e29a17836>", line 2, in <lambda>
| beam.Map(lambda word: testing_after_new(word))
NameError: name 'testing_after' is not defined
def testing_after(messages):
return messages.lower()
Run Code Online (Sandbox Code Playgroud)
而不是将函数作为beam.FlatMap(lambda x : fn(x))传递函数作为beam.FlatMap(x)
我相信在第一种情况下,beam 尝试在工作机器中查找 fn,但无法找到它。实现细节可以在这里找到 - https://github.com/apache/beam/blob/fa4f4183a315f061e035d38ba2c5d4b837b371e0/sdks/python/apache_beam/transforms/core.py#L780