KoK*_*oKo 5 gpu nvidia pytorch
这是什么意思9.06 GiB reserved in total by PyTorch。
如果我7.80 GiB total capacity对同一个脚本使用较小尺寸的 GPU ,它6.20 GiB reserved in total by PyTorch
会显示 Pytorch 中的预留如何工作以及为什么预留内存会根据 GPU 尺寸而变化?
为了解决错误消息,RuntimeError: CUDA out of memory. Tried to allocate 2.86 GiB (GPU 0; 10.92 GiB total capacity; 9.02 GiB already allocated; 1.29 GiB free; 9.06 GiB reserved in total by PyTorch)我尝试将批量大小从 10 减少到 5 到 3。我尝试使用del x_train1. 我也试过使用torch.cuda.empty_cache(). with torch.no_grad()在应用预x_train1 = bert_model(train_indices)[2]训练模型以及训练和验证新模型时,我也使用过。但它们都不起作用。
这是跟踪:
cuda:0
x_train1 = bert_model(train_indices)[2] # Models outputs are tuples
File "/home/kosimadukwe/miniconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 532, in __call__
result = self.forward(*input, **kwargs)
File "/home/kosimadukwe/miniconda3/lib/python3.7/site-packages/transformers/modeling_bert.py", line 783, in forward
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
File "/home/kosimadukwe/miniconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 532, in __call__
result = self.forward(*input, **kwargs)
File "/home/kosimadukwe/miniconda3/lib/python3.7/site-packages/transformers/modeling_bert.py", line 177, in forward
embeddings = inputs_embeds + position_embeddings + token_type_embeddings
RuntimeError: CUDA out of memory. Tried to allocate 2.86 GiB (GPU 0; 10.92 GiB total capacity; 9.02 GiB already allocated; 1.29 GiB free; 9.06 GiB reserved in total by PyTorch)
Run Code Online (Sandbox Code Playgroud)
和 nvidia-smi 输出
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 440.36 Driver Version: 440.36 CUDA Version: 10.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 108... Off | 00000000:3B:00.0 Off | N/A |
| 54% 79C P2 233W / 250W | 8613MiB / 11178MiB | 100% E. Process |
+-------------------------------+----------------------+----------------------+
| 1 GeForce GTX 108... Off | 00000000:AF:00.0 Off | N/A |
| 58% 79C P2 247W / 250W | 4545MiB / 11178MiB | 0% E. Process |
+-------------------------------+----------------------+----------------------+
| 2 GeForce GTX 108... Off | 00000000:D8:00.0 Off | N/A |
| 23% 29C P0 56W / 250W | 0MiB / 11178MiB | 2% E. Process |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1025219 C /usr/pkg/bin/python3.8 8601MiB |
| 1 1024440 C /usr/pkg/bin/python3.8 4535MiB |
Run Code Online (Sandbox Code Playgroud)
和
os.environ['CUDA_VISIBLE_DEVICES'] = '2'
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2779 次 |
| 最近记录: |