Kis*_*mar 2 python google-bigquery table-partitioning
有人能够解释如何在使用 JobConfig 在 google Bigquery 中使用加载作业时创建日期分区表。
我无法理解文档,如果有人可以用示例进行解释,那将非常有帮助。
编辑:所以我想我想感谢@irvifa,但我仍然无法创建一个TimePartitioned Table,这是我尝试使用的代码。
import pandas
from google.cloud import bigquery
def load_df(self, df):
project_id="ProjectID"
dataset_id="Dataset"
table_id="TableName"
table_ref=project_id+"."+dataset_id+"."+table_id
time_partitioning = bigquery.table.TimePartitioning(field="PartitionColumn")
job_config = bigquery.LoadJobConfig(
schema="Schema",
destinationTable=table_ref
write_disposition="WRITE_TRUNCATE",
timePartitioning=time_partitioning
)
Job = Client.load_table_from_dataframe(df, table_ref,
job_config=job_config)
Job.result()
Run Code Online (Sandbox Code Playgroud)
我不知道它是否会有所帮助,但您可以使用以下示例来加载带分区的作业:
from datetime import datetime, time
from concurrent import futures
import math
from pathlib import Path
from google.cloud import bigquery
def run_query(self, query_job_config):
time_partitioning = bigquery.table.TimePartitioning(field="partition_date")
job_config = bigquery.QueryJobConfig()
job_config.destination = query_job_config['destination_dataset_table']
job_config.time_partitioning = time_partitioning
job_config.use_legacy_sql = False
job_config.allow_large_results = True
job_config.write_disposition = 'WRITE_APPEND'
sql = query_job_config['sql']
query_job = self.client.query(sql, job_config=job_config)
query_job.result()
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
1018 次 |
| 最近记录: |