DRG*_*RGN 10 python spyder roc scikit-learn
这是我的代码,我尝试计算 ROC 分数,但我遇到 ValueError 问题:不支持多类格式。我已经在寻找 sci-kit learn 但它没有帮助。最后,我仍然有 ValueError:不支持多类格式。
这是我的代码
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import BaggingClassifier
from sklearn.metrics import confusion_matrix,zero_one_loss
from sklearn.metrics import classification_report,matthews_corrcoef,accuracy_score
from sklearn.metrics import roc_auc_score, auc
dtc = DecisionTreeClassifier()
bc = BaggingClassifier(base_estimator=dtc, n_estimators=10, random_state=17)
bc.fit(train_x, train_Y)
pred_y = bc.predict(test_x)
fprate, tprate, thresholds = roc_curve(test_Y, pred_y)
results = confusion_matrix(test_Y, pred_y)
error = zero_one_loss(test_Y, pred_y)
roc_auc_score(test_Y, pred_y)
FP = results.sum(axis=0) - np.diag(results)
FN = results.sum(axis=1) - np.diag(results)
TP = np.diag(results)
TN = results.sum() - (FP + FN + TP)
print('\n Time Processing: \n',time.process_time())
print('\n Confussion Matrix: \n', results)
print('\n Zero-one classification loss: \n', error)
print('\n True Positive: \n', TP)
print('\n True Negative: \n', TN)
print('\n False Positive: \n', FP)
print('\n False Negative: \n', FN)
print ('\n The Classification report:\n',classification_report(test_Y,pred_y, digits=6))
print ('MCC:', matthews_corrcoef(test_Y,pred_y))
print ('Accuracy:', accuracy_score(test_Y,pred_y))
print (auc(fprate, tprate))
print ('ROC Score:', roc_auc_score(test_Y,pred_y))
Run Code Online (Sandbox Code Playgroud)
这是回溯
从文档中,roc_curve:“注意:此实现仅限于二元分类任务。”
您的标签类别 (y) 是 或1吗0?如果没有,我认为你必须将pos_label参数添加到你的roc_curve调用中。
fprate, tprate, thresholds = roc_curve(test_Y, pred_y, pos_label='your_label')
Run Code Online (Sandbox Code Playgroud)
或者:
test_Y = your_test_y_array # these are either 1's or 0's
fprate, tprate, thresholds = roc_curve(test_Y, pred_y)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
27764 次 |
| 最近记录: |