You*_*oui 4 user-defined-functions apache-spark pyspark keras tensorflow
我想在 pysark pandas_udf 中使用 tensorflow.keras 模型。但是,在将模型发送给工作人员之前对其进行序列化时,我遇到了 pickle 错误。我不确定我是否使用最好的方法来执行我想要的操作,因此我将公开一个最小但完整的示例。
套餐:
进口声明是:
import pandas as pd
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from pyspark.sql import SparkSession, functions as F, types as T
Run Code Online (Sandbox Code Playgroud)
Pyspark UDF 是 pandas_udf:
def compute_output_pandas_udf(model):
'''Spark pandas udf for model prediction.'''
@F.pandas_udf(T.DoubleType(), F.PandasUDFType.SCALAR)
def compute_output(inputs1, inputs2, inputs3):
pdf = pd.DataFrame({
'input1': inputs1,
'input2': inputs2,
'input3': inputs3
})
pdf['predicted_output'] = model.predict(pdf.values)
return pdf['predicted_output']
return compute_output
Run Code Online (Sandbox Code Playgroud)
主要代码:
# Model parameters
weights = np.array([[0.5], [0.4], [0.3]])
bias = np.array([1.25])
activation = 'linear'
input_dim, output_dim = weights.shape
# Initialize model
model = Sequential()
layer = Dense(output_dim, input_dim=input_dim, activation=activation)
model.add(layer)
layer.set_weights([weights, bias])
# Initialize Spark session
spark = SparkSession.builder.appName('test').getOrCreate()
# Create pandas df with inputs and run model
pdf = pd.DataFrame({
'input1': np.random.randn(200),
'input2': np.random.randn(200),
'input3': np.random.randn(200)
})
pdf['predicted_output'] = model.predict(pdf[['input1', 'input2', 'input3']].values)
# Create spark df with inputs and run model using udf
sdf = spark.createDataFrame(pdf)
sdf = sdf.withColumn('predicted_output', compute_output_pandas_udf(model)('input1', 'input2', 'input3'))
sdf.limit(5).show()
Run Code Online (Sandbox Code Playgroud)
当调用compute_output_pandas_udf(model)时会触发此错误:
PicklingError: Could not serialize object: TypeError: can't pickle _thread.RLock objects
Run Code Online (Sandbox Code Playgroud)
我找到了关于pickle keras模型的页面,并在tensorflow.keras上进行了尝试,但是当在UDF中调用模型的预测函数时,出现以下错误(因此序列化有效,但反序列化无效?):
AttributeError: 'Sequential' object has no attribute '_distribution_strategy'
Run Code Online (Sandbox Code Playgroud)
有人知道如何继续吗?先感谢您!
PS:请注意,我没有直接使用 keras 库中的模型,因为我定期出现另一个错误,并且解决它似乎更困难。但是,模型的序列化不会像 tensorflow.keras 模型那样生成错误。
因此,看起来如果我们使用该解决方案直接在tensorflow.keras.models.Model类中扩展getstate和setstate方法,如http://zachmoshe.com/2017/04/03/pickling-keras-models中所示。 html,那么工作人员无法反序列化模型,因为他们没有该类的扩展。
class ModelWrapperPickable:
def __init__(self, model):
self.model = model
def __getstate__(self):
model_str = ''
with tempfile.NamedTemporaryFile(suffix='.hdf5', delete=True) as fd:
tensorflow.keras.models.save_model(self.model, fd.name, overwrite=True)
model_str = fd.read()
d = { 'model_str': model_str }
return d
def __setstate__(self, state):
with tempfile.NamedTemporaryFile(suffix='.hdf5', delete=True) as fd:
fd.write(state['model_str'])
fd.flush()
self.model = tensorflow.keras.models.load_model(fd.name)
Run Code Online (Sandbox Code Playgroud)
UDF 变为:
def compute_output_pandas_udf(model_wrapper):
'''Spark pandas udf for model prediction.'''
@F.pandas_udf(T.DoubleType(), F.PandasUDFType.SCALAR)
def compute_output(inputs1, inputs2, inputs3):
pdf = pd.DataFrame({
'input1': inputs1,
'input2': inputs2,
'input3': inputs3
})
pdf['predicted_output'] = model_wrapper.model.predict(pdf.values)
return pdf['predicted_output']
return compute_output
Run Code Online (Sandbox Code Playgroud)
以及主要代码:
# Model parameters
weights = np.array([[0.5], [0.4], [0.3]])
bias = np.array([1.25])
activation = 'linear'
input_dim, output_dim = weights.shape
# Initialize keras model
model = Sequential()
layer = Dense(output_dim, input_dim=input_dim, activation=activation)
model.add(layer)
layer.set_weights([weights, bias])
# Initialize model wrapper
model_wrapper= ModelWrapperPickable(model)
# Initialize Spark session
spark = SparkSession.builder.appName('test').getOrCreate()
# Create pandas df with inputs and run model
pdf = pd.DataFrame({
'input1': np.random.randn(200),
'input2': np.random.randn(200),
'input3': np.random.randn(200)
})
pdf['predicted_output'] = model_wrapper.model.predict(pdf[['input1', 'input2', 'input3']].values)
# Create spark df with inputs and run model using udf
sdf = spark.createDataFrame(pdf)
sdf = sdf.withColumn('predicted_output', compute_output_pandas_udf(model_wrapper)('input1', 'input2', 'input3'))
sdf.limit(5).show()
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
6419 次 |
最近记录: |