我如何使用列转换器获取_feature_names

use*_*789 5 python scikit-learn

import numpy as np
import pandas as pd
from sklearn.preprocessing import OneHotEncoder,StandardScaler
from sklearn.compose import ColumnTransformer, make_column_transformer
from sklearn.linear_model import LinearRegression

df = pd.DataFrame({'brand'      : ['aaaa', 'asdfasdf', 'sadfds', 'NaN'],
                   'category'   : ['asdf','asfa','asdfas','as'], 
                   'num1'       : [1, 1, 0, 0] ,
                   'target'     : [0.2,0.11,1.34,1.123]})



train_continuous_cols = df.select_dtypes(include=["int64","float64"]).columns.tolist()
train_categorical_cols = df.select_dtypes(include=["object"]).columns.tolist()


preprocess = make_column_transformer( 
    (StandardScaler(),train_continuous_cols),
    (OneHotEncoder(), train_categorical_cols)
)
df= preprocess.fit_transform(df)
Run Code Online (Sandbox Code Playgroud)

只是想获取所有功能名称:

preprocess.get_feature_names()
Run Code Online (Sandbox Code Playgroud)

收到此错误:

Transformer standardscaler (type StandardScaler) does not provide get_feature_names
Run Code Online (Sandbox Code Playgroud)

我该如何解决?在线示例使用管道,我试图避免这种情况。

Del*_*ine 5

以下 ColumnTransformer 的重新实现返回一个 pandas DataFrame。请注意,仅当您将 pandas DataFrame 输入到管道中时才应使用它。

所有荣誉都归功于 Johannes Haupt,他提供了get_feature_names()对没有此功能的转换器具有弹性的功能(请参阅博客文章从 ColumnTransformer 中提取列名称)。我注释掉了这些警告,因为我不想要它们,并且还预先将转换步骤预先准备到列名称;但很容易根据需要取消评论。

#import warnings
import sklearn
import pandas as pd

class ColumnTransformerWithNames(ColumnTransformer):
        
        
    def get_feature_names(column_transformer):
        """Get feature names from all transformers.
        Returns
        -------
        feature_names : list of strings
            Names of the features produced by transform.
        """
        # Remove the internal helper function
        #check_is_fitted(column_transformer)

        # Turn loopkup into function for better handling with pipeline later
        def get_names(trans):
            # >> Original get_feature_names() method
            if trans == 'drop' or (
                    hasattr(column, '__len__') and not len(column)):
                return []
            if trans == 'passthrough':
                if hasattr(column_transformer, '_df_columns'):
                    if ((not isinstance(column, slice))
                            and all(isinstance(col, str) for col in column)):
                        return column
                    else:
                        return column_transformer._df_columns[column]
                else:
                    indices = np.arange(column_transformer._n_features)
                    return ['x%d' % i for i in indices[column]]
            if not hasattr(trans, 'get_feature_names'):
            # >>> Change: Return input column names if no method avaiable
                # Turn error into a warning
    #             warnings.warn("Transformer %s (type %s) does not "
    #                                  "provide get_feature_names. "
    #                                  "Will return input column names if available"
    #                                  % (str(name), type(trans).__name__))
                # For transformers without a get_features_names method, use the input
                # names to the column transformer
                if column is None:
                    return []
                else:
                    return [#name + "__" + 
                            f for f in column]

            return [#name + "__" + 
                    f for f in trans.get_feature_names()]

        ### Start of processing
        feature_names = []

        # Allow transformers to be pipelines. Pipeline steps are named differently, so preprocessing is needed
        if type(column_transformer) == sklearn.pipeline.Pipeline:
            l_transformers = [(name, trans, None, None) for step, name, trans in column_transformer._iter()]
        else:
            # For column transformers, follow the original method
            l_transformers = list(column_transformer._iter(fitted=True))


        for name, trans, column, _ in l_transformers: 
            if type(trans) == sklearn.pipeline.Pipeline:
                # Recursive call on pipeline
                _names = column_transformer.get_feature_names(trans)
                # if pipeline has no transformer that returns names
                if len(_names)==0:
                    _names = [#name + "__" + 
                              f for f in column]
                feature_names.extend(_names)
            else:
                feature_names.extend(get_names(trans))

        return feature_names
        
    def transform(self, X):
        indices = X.index.values.tolist()
        original_columns = X.columns.values.tolist()
        X_mat = super().transform(X)
        new_cols = self.get_feature_names()
        new_X = pd.DataFrame(X_mat.toarray(), index=indices, columns=new_cols)
        return new_X

    def fit_transform(self, X, y=None):
        super().fit_transform(X, y)
        return self.transform(X)
Run Code Online (Sandbox Code Playgroud)

然后您可以将调用替换为ColumnTransformerto ColumnTransformerWithNames。输出是一个 DataFrame,此步骤现在有一个有效的get_feature_names().


Fre*_*z0r 3

我假设您正在寻找访问变压器结果的方法,这会产生一个 numpy 数组。

ColumnTransfomer 有一个名为transformers_:`的属性

从文档中:

transformers_ : list
   The collection of fitted transformers as tuples of
   (name, fitted_transformer, column). `fitted_transformer` can be an
   estimator, 'drop', or 'passthrough'. In case there were no columns
   selected, this will be the unfitted transformer.
   If there are remaining columns, the final element is a tuple of the
   form:
   ('remainder', transformer, remaining_columns) corresponding to the
   ``remainder`` parameter. If there are remaining columns, then
   ``len(transformers_)==len(transformers)+1``, otherwise
   ``len(transformers_)==len(transformers)``.
Run Code Online (Sandbox Code Playgroud)

因此,遗憾的是,这仅提供了有关变压器本身及其所应用的列的信息,但不提供有关结果数据位置的信息,以下内容除外:

注意:转换后的特征矩阵中的列顺序遵循列表中指定列的顺序transformers

所以我们知道输出列的顺序与转换器列表中指定列的顺序相同。另外,我们还知道我们的转换器步骤会产生多少列,因为 StandardScaler() 产生的列数与原始数据相同,而 OneHotEncoder() 产生的列数等于类别数。

import numpy as np
import pandas as pd
from sklearn.preprocessing import OneHotEncoder,StandardScaler
from sklearn.compose import ColumnTransformer, make_column_transformer

df = pd.DataFrame({'brand'      : ['aaaa', 'asdfasdf', 'sadfds', 'NaN'],
                   'category'   : ['asdf','asfa','asdfas','asd'],
                   'num1'       : [1, 1, 0, 0] ,
                   'target'     : [0.2,0.11,1.34,1.123]})

train_continuous_cols = df.select_dtypes(include=["int64","float64"]).columns.tolist()
train_categorical_cols = df.select_dtypes(include=["object"]).columns.tolist()
# get n_categories for categorical features
n_categories = [df[x].nunique() for x in train_categorical_cols]

preprocess = make_column_transformer(
    (StandardScaler(),train_continuous_cols),
    (OneHotEncoder(), train_categorical_cols)
)
preprocessed_df = preprocess.fit_transform(df)
# the scaler yield 1 column each
indexes_scaler = list(range(0,len(train_continuous_cols)))
# the encoder yields a number of columns equal to the number of categories in the data
cum_index_encoder = [0] + list(np.cumsum(n_categories))

# the encoder indexes come after the scaler indexes
start_index_encoder = indexes_scaler[-1]+1
indexes_encoder = [x + start_index_encoder for x in cum_index_encoder]
# get both lower and uper bound of index
index_pairs= zip (indexes_encoder[:-1],indexes_encoder[1:])
Run Code Online (Sandbox Code Playgroud)

这会产生以下输出:

print ('Transformed {} continious cols resulting in a df with shape:'.format(len(train_continuous_cols)))
print (preprocessed_df[: , indexes_scaler].shape)

Run Code Online (Sandbox Code Playgroud)

转换 2 个连续列,得到形状为 (4, 2) 的 df

for column, (start_id, end_id) in zip (train_categorical_cols,index_pairs):
    print('Transformed column {} resulted in a df with shape:'.format(column))
    print(preprocessed_df[:, start_id:end_id].shape) 
Run Code Online (Sandbox Code Playgroud)

转换后的列品牌产生了形状为 (4, 4) 的 df

转换后的列类别产生形状为 (4, 4) 的 df