Use*_*321 5 r dplyr tibble tsibble
我一直在使用该tsibble包,但我不知道如何从聚合结果中删除时间分量的正确方法。因此,在下面的数据集中,我想要按地区和州划分的平均行程。tsibble将 转换为 a 的正确方法是tibble(可能是,我只是不确定)还是我缺少一些选项来实现聚合?
library(tsibble)
library(dplyr)
tourism %>% group_by(Region, State) %>% summarise(Mean_trips = mean(Trips))
# A tsibble: 6,080 x 4 [1Q]
# Key: Region, State [76]
# Groups: Region [76]
Region State Quarter Mean_trips
<chr> <chr> <qtr> <dbl>
1 Adelaide South Australia 1998 Q1 165.
2 Adelaide South Australia 1998 Q2 112.
3 Adelaide South Australia 1998 Q3 148.
## This is not what I want, this is what I want:
tourism %>% as_tibble %>% group_by(Region, State) %>% summarise(Mean_trips = mean(Trips))
# A tibble: 76 x 3
# Groups: Region [76]
Region State Mean_trips
<chr> <chr> <dbl>
1 Adelaide South Australia 143.
2 Adelaide Hills South Australia 7.18
Run Code Online (Sandbox Code Playgroud)
如果我们使用select(-Quarter)数据tourism,它会给出一条信息丰富的错误消息。
library(tsibble)
library(dplyr)
tourism %>% select(-Quarter)
Run Code Online (Sandbox Code Playgroud)
Quarter错误:无法删除列(索引)。您需要as_tibble()使用数据框吗?
因此,as_tibble这是转换为 tibble 的正确方法。
tourism %>%
as_tibble %>%
group_by(Region, State) %>%
summarise(Mean_trips = mean(Trips))
# Region State Mean_trips
# <chr> <chr> <dbl>
# 1 Adelaide South Australia 143.
# 2 Adelaide Hills South Australia 7.18
# 3 Alice Springs Northern Territory 14.2
# 4 Australia's Coral Coast Western Australia 47.4
#...
Run Code Online (Sandbox Code Playgroud)