4 python conv-neural-network pytorch
由于我的 CUDA 版本是 8,所以我使用 torch 1.0.0
我需要将 Flatten 层用于顺序模型。这是我的代码:
import torch
import torch.nn as nn
import torch.nn.functional as F
print(torch.__version__)
# 1.0.0
from collections import OrderedDict
layers = OrderedDict()
layers['conv1'] = nn.Conv2d(1, 5, 3)
layers['relu1'] = nn.ReLU()
layers['conv2'] = nn.Conv2d(5, 1, 3)
layers['relu2'] = nn.ReLU()
layers['flatten'] = nn.Flatten()
layers['linear1'] = nn.Linear(3600, 1)
model = nn.Sequential(
layers
).cuda()
Run Code Online (Sandbox Code Playgroud)
它给了我以下错误:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-38-080f7c5f5037> in <module>
6 layers['conv2'] = nn.Conv2d(5, 1, 3)
7 layers['relu2'] = nn.ReLU()
----> 8 layers['flatten'] = nn.Flatten()
9 layers['linear1'] = nn.Linear(3600, 1)
10 model = nn.Sequential(
AttributeError: module 'torch.nn' has no attribute 'Flatten'
Run Code Online (Sandbox Code Playgroud)
如何在 pytorch 1.0.0 中展平我的转换层输出?
只需新建一个Flatten 图层即可。
from collections import OrderedDict
class Flatten(nn.Module):
def forward(self, input):
return input.view(input.size(0), -1)
layers = OrderedDict()
layers['conv1'] = nn.Conv2d(1, 5, 3)
layers['relu1'] = nn.ReLU()
layers['conv2'] = nn.Conv2d(5, 1, 3)
layers['relu2'] = nn.ReLU()
layers['flatten'] = Flatten()
layers['linear1'] = nn.Linear(3600, 1)
model = nn.Sequential(
layers
).cuda()
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
4443 次 |
最近记录: |