Nav*_*vin 2 numpy deep-learning conv-neural-network keras tensorflow
我正在研究 CNN 模型,我很好奇如何将 datagen.flow_from_directory() 给出的输出转换为凹凸数组。datagen.flow_from_directory() 的格式是目录迭代器。
除了 ImageDataGenerator 之外,还有其他方法可以从目录中获取数据。
img_width = 150
img_height = 150
datagen = ImageDataGenerator(rescale=1/255.0, validation_split=0.2)
train_data_gen = directory='/content/xray_dataset_covid19',
target_size = (img_width, img_height),
class_mode='binary',
batch_size=16,
subset='training')
vali_data_gen = datagen.flow_from_directory(directory='/content/xray_dataset_covid19',
target_size = (img_width, img_height),
class_mode='binary',
batch_size=16,
subset='validation')
Run Code Online (Sandbox Code Playgroud)
第一种方法:
import numpy as np
data_gen = ImageDataGenerator(rescale = 1. / 255)
data_generator = datagen.flow_from_directory(
data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical')
data_list = []
batch_index = 0
while batch_index <= data_generator.batch_index:
data = data_generator.next()
data_list.append(data[0])
batch_index = batch_index + 1
# now, data_array is the numeric data of whole images
data_array = np.asarray(data_list)
Run Code Online (Sandbox Code Playgroud)
或者,您可以自己使用PIL和numpy处理图像:
from PIL import Image
import numpy as np
def image_to_array(file_path):
img = Image.open(file_path)
img = img.resize((img_width,img_height))
data = np.asarray(img,dtype='float32')
return data
# now data is a tensor with shape(width,height,channels) of a single image
Run Code Online (Sandbox Code Playgroud)
第二种方法:您应该使用ImageDataGenerator.flow,它numpy直接接受数组。这取代了flow_from_directory调用,使用生成器的所有其他代码应该是相同的
| 归档时间: |
|
| 查看次数: |
3725 次 |
| 最近记录: |