使用 plot_confusion_matrix 绘制多个混淆矩阵

Suz*_*uzy 3 python machine-learning matplotlib scikit-learn seaborn

我正在使用plot_confusion_matrixfrom sklearn.metrics. 我想像子图一样表示那些彼此相邻的混淆矩阵,我怎么能做到这一点?

yat*_*atu 16

让我们使用 good'ol iris 数据集来重现这一点,并拟合几个分类器来绘制它们各自的混淆矩阵plot_confusion_matrix

from sklearn.ensemble import AdaBoostClassifier, GradientBoostingClassifier
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import plot_confusion_matrix

data = load_iris()
X = data.data
y = data.target
Run Code Online (Sandbox Code Playgroud)

设置 -

X_train, X_test, y_train, y_test = train_test_split(X, y)
classifiers = [LogisticRegression(solver='lbfgs'), 
               AdaBoostClassifier(),
               GradientBoostingClassifier(), 
               SVC()]
for cls in classifiers:
    cls.fit(X_train, y_train)
Run Code Online (Sandbox Code Playgroud)

因此,您可以简单地比较所有矩阵的方法是创建一组带有plt.subplots. 然后迭代轴对象和训练的分类器(plot_confusion_matrix期望作为输入)并绘制各个混淆矩阵:

fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(15,10))

for cls, ax in zip(classifiers, axes.flatten()):
    plot_confusion_matrix(cls, 
                          X_test, 
                          y_test, 
                          ax=ax, 
                          cmap='Blues',
                         display_labels=data.target_names)
    ax.title.set_text(type(cls).__name__)
plt.tight_layout()  
plt.show()
Run Code Online (Sandbox Code Playgroud)

在此处输入图片说明