Roh*_*aik 4 python machine-learning neural-network conv-neural-network tensorflow
我只是不知道问题是什么...我之前尝试过 InteractiveSession() 并传递显式 session ,但这个错误没有得到解决...我是张量流新手...请帮助。
cost=-tf.reduce_sum(y*tf.log(y_))
train_step=tf.train.AdamOptimizer(LEARNING_RATE).minimize(cost)
correct_pred=tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, 'float'))
predict=tf.argmax(y,1)
Run Code Online (Sandbox Code Playgroud)
这是我的会议
train_accuracies = []
validation_accuracies = []
x_range = []
num_examples=train_images.shape[0]
init=tf.global_variables_initializer()
minibatches=random_mini_batches(train_images,train_labels,
mini_batch_size = BATCH_SIZE)
display_step=1
init = tf.initialize_all_variables()
with tf.Session().as_default() as sess:
sess.run(init)
for epoch in range(TRAINING_ITERATIONS):
for minibatch in minibatches:
(minibatch_X,minibatch_Y)=minibatch
if epoch%display_step == 0 or (epoch+1) == TRAINING_ITERATIONS:
train_accuracy = accuracy.eval(session=sess,feed_dict={x:minibatch_X,
y: minibatch_Y,
keep_prob: 1.0})
if(VALIDATION_SIZE):
validation_accuracy = accuracy.eval(session=sess,feed_dict={ x: validation_images[0:BATCH_SIZE],
y: validation_labels[0:BATCH_SIZE],
keep_prob: 1.0})
print('training_accuracy / validation_accuracy => %.2f / %.2f for step %d'%(train_accuracy, validation_accuracy, epoch))
validation_accuracies.append(validation_accuracy)
else:
print('training_accuracy => %.4f for step %d'%(train_accuracy, epoch))
train_accuracies.append(train_accuracy)
x_range.append(epoch)
# increase display_step
if epoch%(display_step*10) == 0 and epoch:
display_step *= 10
# train on batch
sess.run(train_step, feed_dict={x: minibatch_X, y:minibatch_Y, keep_prob: DROPOUT})
Run Code Online (Sandbox Code Playgroud)
并生成以下错误
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-63-910bbc0840b2> in <module>
18 train_accuracy = accuracy.eval(session=sess,feed_dict={x:minibatch_X,
19 y: minibatch_Y,
---> 20 keep_prob: 1.0})
21 if(VALIDATION_SIZE):
22 validation_accuracy = accuracy.eval(session=sess,feed_dict={ x:
validation_images[0:BATCH_SIZE],
/opt/conda/lib/python3.6/site-packages/tensorflow_core/python/framework/ops.py in eval(self,
feed_dict, session)
788
789 """
--> 790 return _eval_using_default_session(self, feed_dict, self.graph, session)
791
792 def experimental_ref(self):
/opt/conda/lib/python3.6/site-packages/tensorflow_core/python/framework/ops.py in
_eval_using_default_session(tensors, feed_dict, graph, session)
5307 else:
5308 if session.graph is not graph:
-> 5309 raise ValueError("Cannot use the given session to evaluate tensor: "
5310 "the tensor's graph is different from the session's "
5311 "graph.")
ValueError: Cannot use the given session to evaluate tensor: the tensor's graph is different
from the session's graph.
Run Code Online (Sandbox Code Playgroud)
请建议如何处理两个会话以及如何解决此问题。主要问题是我尝试将会话作为 eval(session=sess) 传递,但它不起作用。据说我使用的计算图与精度张量的图不同
小智 5
我重新创建了由于可能的方法而导致的错误,并提供了修复程序。
在代码中提供了更多注释,以便更清楚地了解错误并修复。
注意 -我使用了相同的代码,经过一些调整来重新创建错误原因的可能性并修复相同的问题。
最佳修复代码位于此答案的末尾。
错误代码 1 -默认会话和使用在另一个图表中创建的变量时出错
%tensorflow_version 1.x
import tensorflow as tf
g = tf.Graph()
with g.as_default():
x = tf.constant(1.0) # x is created in graph g
with tf.Session().as_default() as sess:
y = tf.constant(2.0) # y is created in TensorFlow's default graph!!!
print(y.eval(session=sess)) # y was created in TF's default graph, and is evaluated in
# default session, so everything is ok.
print(x.eval(session=sess)) # x was created in graph g and it is evaluated in session s
# which is tied to graph g, but it is evaluated in
# session s which is tied to graph g => ERROR
Run Code Online (Sandbox Code Playgroud)
输出 -
2.0
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-5-f35cb204cf59> in <module>()
10 print(y.eval(session=sess)) # y was created in TF's default graph, and is evaluated in
11 # default session, so everything is ok.
---> 12 print(x.eval(session=sess)) # x was created in graph g and it is evaluated in session s
13 # which is tied to graph g, but it is evaluated in
14 # session s which is tied to graph g => ERROR
1 frames
/tensorflow-1.15.2/python3.6/tensorflow_core/python/framework/ops.py in _eval_using_default_session(tensors, feed_dict, graph, session)
5402 else:
5403 if session.graph is not graph:
-> 5404 raise ValueError("Cannot use the given session to evaluate tensor: "
5405 "the tensor's graph is different from the session's "
5406 "graph.")
ValueError: Cannot use the given session to evaluate tensor: the tensor's graph is different from the session's graph.
Run Code Online (Sandbox Code Playgroud)
错误代码 2 -图形会话作为默认值并使用在默认图形中创建的变量时出错
%tensorflow_version 1.x
import tensorflow as tf
g = tf.Graph()
with g.as_default():
x = tf.constant(1.0) # x is created in graph g
with tf.Session(graph=g).as_default() as sess:
print(x.eval(session=sess)) # x was created in graph g and it is evaluated in session s
# which is tied to graph g, so everything is ok.
y = tf.constant(2.0) # y is created in TensorFlow's default graph!!!
print(y.eval()) # y was created in TF's default graph, but it is evaluated in
# session s which is tied to graph g => ERROR
Run Code Online (Sandbox Code Playgroud)
输出 -
1.0
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-15-6b8b687c5178> in <module>()
10 # which is tied to graph g, so everything is ok.
11 y = tf.constant(2.0) # y is created in TensorFlow's default graph!!!
---> 12 print(y.eval()) # y was created in TF's default graph, but it is evaluated in
13 # session s which is tied to graph g => ERROR
1 frames
/tensorflow-1.15.2/python3.6/tensorflow_core/python/framework/ops.py in _eval_using_default_session(tensors, feed_dict, graph, session)
5396 "`eval(session=sess)`")
5397 if session.graph is not graph:
-> 5398 raise ValueError("Cannot use the default session to evaluate tensor: "
5399 "the tensor's graph is different from the session's "
5400 "graph. Pass an explicit session to "
ValueError: Cannot use the default session to evaluate tensor: the tensor's graph is different from the session's graph. Pass an explicit session to `eval(session=sess)`.
Run Code Online (Sandbox Code Playgroud)
错误代码 3 -按照错误代码 2 -输出中的建议,将显式会话传递给eval(session=sess). 让我们试试这个。
%tensorflow_version 1.x
import tensorflow as tf
g = tf.Graph()
with g.as_default():
x = tf.constant(1.0) # x is created in graph g
with tf.Session(graph=g).as_default() as sess:
print(x.eval(session=sess)) # x was created in graph g and it is evaluated in session s
# which is tied to graph g, so everything is ok.
y = tf.constant(2.0) # y is created in TensorFlow's default graph!!!
print(y.eval(session=sess)) # y was created in TF's default graph, but it is evaluated in
# session s which is tied to graph g => ERROR
Run Code Online (Sandbox Code Playgroud)
输出 -
1.0
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-16-83809aa4e485> in <module>()
10 # which is tied to graph g, so everything is ok.
11 y = tf.constant(2.0) # y is created in TensorFlow's default graph!!!
---> 12 print(y.eval(session=sess)) # y was created in TF's default graph, but it is evaluated in
13 # session s which is tied to graph g => ERROR
1 frames
/tensorflow-1.15.2/python3.6/tensorflow_core/python/framework/ops.py in _eval_using_default_session(tensors, feed_dict, graph, session)
5402 else:
5403 if session.graph is not graph:
-> 5404 raise ValueError("Cannot use the given session to evaluate tensor: "
5405 "the tensor's graph is different from the session's "
5406 "graph.")
ValueError: Cannot use the given session to evaluate tensor: the tensor's graph is different from the session's graph.
Run Code Online (Sandbox Code Playgroud)
修复 1 -修复默认会话和未分配给任何图形的变量
%tensorflow_version 1.x
import tensorflow as tf
x = tf.constant(1.0) # x is in not assigned to any graph
with tf.Session().as_default() as sess:
y = tf.constant(2.0) # y is created in TensorFlow's default graph!!!
print(y.eval(session=sess)) # y was created in TF's default graph, and is evaluated in
# default session, so everything is ok.
print(x.eval(session=sess)) # x not assigned to any graph, and is evaluated in
# default session, so everything is ok.
Run Code Online (Sandbox Code Playgroud)
输出 -
2.0
1.0
Run Code Online (Sandbox Code Playgroud)
修复 2 - 最好的修复是将构建阶段和执行阶段完全分开。
import tensorflow as tf
g = tf.Graph()
with g.as_default():
x = tf.constant(1.0) # x is created in graph g
y = tf.constant(2.0) # y is created in graph g
with tf.Session(graph=g).as_default() as sess:
print(x.eval()) # x was created in graph g and it is evaluated in session s
# which is tied to graph g, so everything is ok.
print(y.eval()) # y was created in graph g and it is evaluated in session s
# which is tied to graph g, so everything is ok.
Run Code Online (Sandbox Code Playgroud)
输出 -
1.0
2.0
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
3849 次 |
| 最近记录: |