Hoo*_*ree 0 backpropagation pytorch
我正在 PyTorch 中使用线性回归示例。我知道我在 'with torch.no_grad():' 中包含 'loss.backward()' 是错误的,但是为什么它与我的代码运行良好?
根据pytorch docs,torch.autograd.no_grad是一个禁用梯度计算的上下文管理器。所以我真的很困惑。
代码在这里:
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# Toy dataset
x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168],
[9.779], [6.182], [7.59], [2.167], [7.042],
[10.791], [5.313], [7.997], [3.1]], dtype=np.float32)
y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573],
[3.366], [2.596], [2.53], [1.221], [2.827],
[3.465], [1.65], [2.904], [1.3]], dtype=np.float32)
input_size = 1
output_size = 1
epochs = 100
learning_rate = 0.05
model = nn.Linear(input_size, output_size)
criterion = nn.MSELoss(reduction='sum')
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# training
for epoch in range(epochs):
# convert numpy to tensor
inputs = torch.from_numpy(x_train)
targets = torch.from_numpy(y_train)
# forward
out = model(inputs)
loss = criterion(out, targets)
# backward
with torch.no_grad():
model.zero_grad()
loss.backward()
optimizer.step()
print('inputs grad : ', inputs.requires_grad)
if epoch % 5 == 0:
print ('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, epochs, loss.item()))
predicted = model(torch.from_numpy(x_train)).detach().numpy()
plt.plot(x_train, y_train, 'ro', label='Original data')
plt.plot(x_train, predicted, label='Fitted line')
plt.legend()
plt.show()
# Save the model checkpoint
torch.save(model.state_dict(), 'model\linear_model.ckpt')
Run Code Online (Sandbox Code Playgroud)
预先感谢您回答我的问题。
这是有效的,因为损失计算发生在 之前,no_grad并且您继续根据该损失计算(该计算启用了梯度)计算梯度。
基本上,您继续使用在no_grad.
当您实际使用时no_grad:
for epoch in range(epochs):
# convert numpy to tensor
inputs = torch.from_numpy(x_train)
targets = torch.from_numpy(y_train)
with torch.no_grad(): # no_grad used here
# forward
out = model(inputs)
loss = criterion(out, targets)
model.zero_grad()
loss.backward()
optimizer.step()
print('inputs grad : ', inputs.requires_grad)
if epoch % 5 == 0:
print ('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, epochs, loss.item()))
Run Code Online (Sandbox Code Playgroud)
然后你会得到正确的错误,说:
element 0 of tensors does not require grad and does not have a grad_fn.
也就是你no_grad在不合适的地方使用它。
如果你打印.requires_gradof loss,那么你会看到 loss has requires_grad。
也就是说,当你这样做时:
for epoch in range(epochs):
# convert numpy to tensor
inputs = torch.from_numpy(x_train)
targets = torch.from_numpy(y_train)
# forward
out = model(inputs)
loss = criterion(out, targets)
# backward
with torch.no_grad():
model.zero_grad()
loss.backward()
optimizer.step()
print('inputs grad : ', inputs.requires_grad)
print('loss grad : ', loss.requires_grad) # Prints loss.require_rgad
if epoch % 5 == 0:
print ('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, epochs, loss.item()))
Run Code Online (Sandbox Code Playgroud)
你会看见:
inputs grad : False
loss grad : True
Run Code Online (Sandbox Code Playgroud)
此外,该
print('inputs grad : ', inputs.requires_grad)
Run Code Online (Sandbox Code Playgroud)
将始终打印False。也就是说,如果你这样做
for epoch in range(epochs):
# convert numpy to tensor
inputs = torch.from_numpy(x_train)
targets = torch.from_numpy(y_train)
print('inputs grad : ', inputs.requires_grad). # Print the inputs.requires_grad
# forward
out = model(inputs)
loss = criterion(out, targets)
# backward
with torch.no_grad():
model.zero_grad()
loss.backward()
optimizer.step()
print('inputs grad : ', inputs.requires_grad)
print('loss grad : ', loss.requires_grad)
if epoch % 5 == 0:
print ('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, epochs, loss.item()))
Run Code Online (Sandbox Code Playgroud)
你会得到:
inputs grad : False
inputs grad : False
loss grad : True
Run Code Online (Sandbox Code Playgroud)
也就是说,您正在使用错误的东西来检查您做错了什么。你能做的最好的事情是再次阅读 PyTorch 关于梯度力学的文档。
| 归档时间: |
|
| 查看次数: |
705 次 |
| 最近记录: |